Step |
Hyp |
Ref |
Expression |
1 |
|
pclss2pol.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pclss2pol.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
pclss2pol.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
4 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → 𝐾 ∈ HL ) |
5 |
1 2
|
2polssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
6 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
7 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝐴 ) |
8 |
6 7
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝐴 ) |
9 |
1 3
|
pclssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) ⊆ ( 𝑈 ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
10 |
4 5 8 9
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) ⊆ ( 𝑈 ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
11 |
|
eqid |
⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) |
12 |
1 11 2
|
polsubN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) |
13 |
6 12
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) |
14 |
11 3
|
pclidN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) → ( 𝑈 ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
15 |
13 14
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
16 |
10 15
|
sseqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |