Metamath Proof Explorer


Theorem pclss2polN

Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclss2pol.a 𝐴 = ( Atoms ‘ 𝐾 )
pclss2pol.o = ( ⊥𝑃𝐾 )
pclss2pol.c 𝑈 = ( PCl ‘ 𝐾 )
Assertion pclss2polN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑈𝑋 ) ⊆ ( ‘ ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 pclss2pol.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pclss2pol.o = ( ⊥𝑃𝐾 )
3 pclss2pol.c 𝑈 = ( PCl ‘ 𝐾 )
4 simpl ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → 𝐾 ∈ HL )
5 1 2 2polssN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → 𝑋 ⊆ ( ‘ ( 𝑋 ) ) )
6 1 2 polssatN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑋 ) ⊆ 𝐴 )
7 1 2 polssatN ( ( 𝐾 ∈ HL ∧ ( 𝑋 ) ⊆ 𝐴 ) → ( ‘ ( 𝑋 ) ) ⊆ 𝐴 )
8 6 7 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ‘ ( 𝑋 ) ) ⊆ 𝐴 )
9 1 3 pclssN ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( ‘ ( 𝑋 ) ) ∧ ( ‘ ( 𝑋 ) ) ⊆ 𝐴 ) → ( 𝑈𝑋 ) ⊆ ( 𝑈 ‘ ( ‘ ( 𝑋 ) ) ) )
10 4 5 8 9 syl3anc ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑈𝑋 ) ⊆ ( 𝑈 ‘ ( ‘ ( 𝑋 ) ) ) )
11 eqid ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 )
12 1 11 2 polsubN ( ( 𝐾 ∈ HL ∧ ( 𝑋 ) ⊆ 𝐴 ) → ( ‘ ( 𝑋 ) ) ∈ ( PSubSp ‘ 𝐾 ) )
13 6 12 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ‘ ( 𝑋 ) ) ∈ ( PSubSp ‘ 𝐾 ) )
14 11 3 pclidN ( ( 𝐾 ∈ HL ∧ ( ‘ ( 𝑋 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) → ( 𝑈 ‘ ( ‘ ( 𝑋 ) ) ) = ( ‘ ( 𝑋 ) ) )
15 13 14 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑈 ‘ ( ‘ ( 𝑋 ) ) ) = ( ‘ ( 𝑋 ) ) )
16 10 15 sseqtrd ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑈𝑋 ) ⊆ ( ‘ ( 𝑋 ) ) )