Step |
Hyp |
Ref |
Expression |
1 |
|
pclun2.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
2 |
|
pclun2.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
3 |
|
pclun2.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝐾 ∈ HL ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
8 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
10 |
5 2 3
|
pclunN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) = ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ) |
11 |
4 7 9 10
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) = ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ) |
12 |
1 2
|
paddclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
13 |
1 3
|
pclidN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
14 |
4 12 13
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
15 |
11 14
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |