Step |
Hyp |
Ref |
Expression |
1 |
|
pclun.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pclun.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
3 |
|
pclun.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝐾 ∈ 𝑉 ) |
5 |
1 2
|
paddunssN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ⊆ ( 𝑋 + 𝑌 ) ) |
6 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
7 |
1 3
|
pclssN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 𝑋 ∪ 𝑌 ) ⊆ ( 𝑋 + 𝑌 ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ) |
9 |
|
unss |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ↔ ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ) |
10 |
9
|
biimpi |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ) |
12 |
1 3
|
pclssidN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
13 |
4 11 12
|
syl2anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
14 |
|
unss |
⊢ ( ( 𝑋 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∧ 𝑌 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ↔ ( 𝑋 ∪ 𝑌 ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∧ 𝑌 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
16 |
|
simp2 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ 𝐴 ) |
17 |
|
simp3 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑌 ⊆ 𝐴 ) |
18 |
|
eqid |
⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) |
19 |
1 18 3
|
pclclN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) |
20 |
4 11 19
|
syl2anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) |
21 |
1 18 2
|
paddss |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) ) → ( ( 𝑋 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∧ 𝑌 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ↔ ( 𝑋 + 𝑌 ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
22 |
4 16 17 20 21
|
syl13anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∧ 𝑌 ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ↔ ( 𝑋 + 𝑌 ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
23 |
15 22
|
mpbid |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
24 |
1 18
|
psubssat |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ 𝐴 ) |
25 |
4 20 24
|
syl2anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ 𝐴 ) |
26 |
1 3
|
pclssN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 𝑋 + 𝑌 ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∧ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ⊆ ( 𝑈 ‘ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
27 |
4 23 25 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ⊆ ( 𝑈 ‘ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |
28 |
18 3
|
pclidN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ∈ ( PSubSp ‘ 𝐾 ) ) → ( 𝑈 ‘ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) = ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
29 |
4 20 28
|
syl2anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) = ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
30 |
27 29
|
sseqtrd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ⊆ ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
31 |
8 30
|
eqssd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑋 ∪ 𝑌 ) ) = ( 𝑈 ‘ ( 𝑋 + 𝑌 ) ) ) |