Metamath Proof Explorer


Theorem pclvalN

Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a 𝐴 = ( Atoms ‘ 𝐾 )
pclfval.s 𝑆 = ( PSubSp ‘ 𝐾 )
pclfval.c 𝑈 = ( PCl ‘ 𝐾 )
Assertion pclvalN ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑈𝑋 ) = { 𝑦𝑆𝑋𝑦 } )

Proof

Step Hyp Ref Expression
1 pclfval.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pclfval.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 pclfval.c 𝑈 = ( PCl ‘ 𝐾 )
4 1 fvexi 𝐴 ∈ V
5 4 elpw2 ( 𝑋 ∈ 𝒫 𝐴𝑋𝐴 )
6 1 2 3 pclfvalN ( 𝐾𝑉𝑈 = ( 𝑥 ∈ 𝒫 𝐴 { 𝑦𝑆𝑥𝑦 } ) )
7 6 fveq1d ( 𝐾𝑉 → ( 𝑈𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝐴 { 𝑦𝑆𝑥𝑦 } ) ‘ 𝑋 ) )
8 7 adantr ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → ( 𝑈𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝐴 { 𝑦𝑆𝑥𝑦 } ) ‘ 𝑋 ) )
9 eqid ( 𝑥 ∈ 𝒫 𝐴 { 𝑦𝑆𝑥𝑦 } ) = ( 𝑥 ∈ 𝒫 𝐴 { 𝑦𝑆𝑥𝑦 } )
10 sseq1 ( 𝑥 = 𝑋 → ( 𝑥𝑦𝑋𝑦 ) )
11 10 rabbidv ( 𝑥 = 𝑋 → { 𝑦𝑆𝑥𝑦 } = { 𝑦𝑆𝑋𝑦 } )
12 11 inteqd ( 𝑥 = 𝑋 { 𝑦𝑆𝑥𝑦 } = { 𝑦𝑆𝑋𝑦 } )
13 simpr ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 )
14 elpwi ( 𝑋 ∈ 𝒫 𝐴𝑋𝐴 )
15 14 adantl ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → 𝑋𝐴 )
16 1 2 atpsubN ( 𝐾𝑉𝐴𝑆 )
17 16 adantr ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → 𝐴𝑆 )
18 sseq2 ( 𝑦 = 𝐴 → ( 𝑋𝑦𝑋𝐴 ) )
19 18 elrab3 ( 𝐴𝑆 → ( 𝐴 ∈ { 𝑦𝑆𝑋𝑦 } ↔ 𝑋𝐴 ) )
20 17 19 syl ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → ( 𝐴 ∈ { 𝑦𝑆𝑋𝑦 } ↔ 𝑋𝐴 ) )
21 15 20 mpbird ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → 𝐴 ∈ { 𝑦𝑆𝑋𝑦 } )
22 21 ne0d ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → { 𝑦𝑆𝑋𝑦 } ≠ ∅ )
23 intex ( { 𝑦𝑆𝑋𝑦 } ≠ ∅ ↔ { 𝑦𝑆𝑋𝑦 } ∈ V )
24 22 23 sylib ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → { 𝑦𝑆𝑋𝑦 } ∈ V )
25 9 12 13 24 fvmptd3 ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 { 𝑦𝑆𝑥𝑦 } ) ‘ 𝑋 ) = { 𝑦𝑆𝑋𝑦 } )
26 8 25 eqtrd ( ( 𝐾𝑉𝑋 ∈ 𝒫 𝐴 ) → ( 𝑈𝑋 ) = { 𝑦𝑆𝑋𝑦 } )
27 5 26 sylan2br ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑈𝑋 ) = { 𝑦𝑆𝑋𝑦 } )