Step |
Hyp |
Ref |
Expression |
1 |
|
pcmpt.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) |
2 |
|
pcmpt.2 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) |
3 |
|
pcmpt.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
pcmpt.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
pcmpt.5 |
⊢ ( 𝑛 = 𝑃 → 𝐴 = 𝐵 ) |
6 |
|
fveq2 |
⊢ ( 𝑝 = 1 → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑝 = 1 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
8 |
|
breq2 |
⊢ ( 𝑝 = 1 → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 1 ) ) |
9 |
8
|
ifbid |
⊢ ( 𝑝 = 1 → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑝 = 1 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑝 = 1 → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑝 = 𝑘 → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑝 = 𝑘 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
14 |
|
breq2 |
⊢ ( 𝑝 = 𝑘 → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 𝑘 ) ) |
15 |
14
|
ifbid |
⊢ ( 𝑝 = 𝑘 → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑝 = 𝑘 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑝 = 𝑘 → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
20 |
|
breq2 |
⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ ( 𝑘 + 1 ) ) ) |
21 |
20
|
ifbid |
⊢ ( 𝑝 = ( 𝑘 + 1 ) → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) |
22 |
19 21
|
eqeq12d |
⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑝 = 𝑁 → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝑝 = 𝑁 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |
26 |
|
breq2 |
⊢ ( 𝑝 = 𝑁 → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 𝑁 ) ) |
27 |
26
|
ifbid |
⊢ ( 𝑝 = 𝑁 → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) |
28 |
25 27
|
eqeq12d |
⊢ ( 𝑝 = 𝑁 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑝 = 𝑁 → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) ) ) |
30 |
|
1z |
⊢ 1 ∈ ℤ |
31 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
32 |
30 31
|
ax-mp |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
33 |
|
1nn |
⊢ 1 ∈ ℕ |
34 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
35 |
|
eleq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ℙ ↔ 1 ∈ ℙ ) ) |
36 |
34 35
|
mtbiri |
⊢ ( 𝑛 = 1 → ¬ 𝑛 ∈ ℙ ) |
37 |
36
|
iffalsed |
⊢ ( 𝑛 = 1 → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = 1 ) |
38 |
|
1ex |
⊢ 1 ∈ V |
39 |
37 1 38
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) = 1 ) |
40 |
33 39
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = 1 |
41 |
32 40
|
eqtri |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = 1 |
42 |
41
|
oveq2i |
⊢ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( 𝑃 pCnt 1 ) |
43 |
|
pc1 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |
44 |
42 43
|
eqtrid |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 0 ) |
45 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
46 |
|
1re |
⊢ 1 ∈ ℝ |
47 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
48 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
49 |
47 48
|
syl |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
50 |
|
ltnle |
⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 1 < 𝑃 ↔ ¬ 𝑃 ≤ 1 ) ) |
51 |
46 49 50
|
sylancr |
⊢ ( 𝑃 ∈ ℙ → ( 1 < 𝑃 ↔ ¬ 𝑃 ≤ 1 ) ) |
52 |
45 51
|
mpbid |
⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 ≤ 1 ) |
53 |
52
|
iffalsed |
⊢ ( 𝑃 ∈ ℙ → if ( 𝑃 ≤ 1 , 𝐵 , 0 ) = 0 ) |
54 |
44 53
|
eqtr4d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) |
55 |
4 54
|
syl |
⊢ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) |
56 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ∈ ℙ ) |
57 |
1 2
|
pcmptcl |
⊢ ( 𝜑 → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |
58 |
57
|
simpld |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℕ ) |
59 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
60 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
61 |
58 59 60
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
62 |
61
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
63 |
56 62
|
pccld |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℕ0 ) |
64 |
63
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
65 |
64
|
addid2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
66 |
59
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
67 |
|
ovex |
⊢ ( 𝑛 ↑ 𝐴 ) ∈ V |
68 |
67 38
|
ifex |
⊢ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V |
69 |
68
|
csbex |
⊢ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V |
70 |
1
|
fvmpts |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) |
71 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
72 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑘 + 1 ) ∈ ℙ |
73 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑘 + 1 ) |
74 |
|
nfcv |
⊢ Ⅎ 𝑛 ↑ |
75 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 |
76 |
73 74 75
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) |
77 |
|
nfcv |
⊢ Ⅎ 𝑛 1 |
78 |
72 76 77
|
nfif |
⊢ Ⅎ 𝑛 if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) |
79 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 ∈ ℙ ↔ ( 𝑘 + 1 ) ∈ ℙ ) ) |
80 |
|
id |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝑛 = ( 𝑘 + 1 ) ) |
81 |
|
csbeq1a |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝐴 = ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) |
82 |
80 81
|
oveq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 ↑ 𝐴 ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
83 |
79 82
|
ifbieq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
84 |
71 78 83
|
csbief |
⊢ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) |
85 |
70 84
|
eqtrdi |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
86 |
66 69 85
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
87 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑘 + 1 ) = 𝑃 ) |
88 |
87 56
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℙ ) |
89 |
88
|
iftrued |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
90 |
87
|
csbeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 = ⦋ 𝑃 / 𝑛 ⦌ 𝐴 ) |
91 |
|
nfcvd |
⊢ ( 𝑃 ∈ ℙ → Ⅎ 𝑛 𝐵 ) |
92 |
91 5
|
csbiegf |
⊢ ( 𝑃 ∈ ℙ → ⦋ 𝑃 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
93 |
56 92
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ⦋ 𝑃 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
94 |
90 93
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 = 𝐵 ) |
95 |
87 94
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) = ( 𝑃 ↑ 𝐵 ) ) |
96 |
86 89 95
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ↑ 𝐵 ) ) |
97 |
96
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt ( 𝑃 ↑ 𝐵 ) ) ) |
98 |
5
|
eleq1d |
⊢ ( 𝑛 = 𝑃 → ( 𝐴 ∈ ℕ0 ↔ 𝐵 ∈ ℕ0 ) ) |
99 |
98
|
rspcv |
⊢ ( 𝑃 ∈ ℙ → ( ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → 𝐵 ∈ ℕ0 ) ) |
100 |
4 2 99
|
sylc |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝐵 ∈ ℕ0 ) |
102 |
|
pcidlem |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐵 ) ) = 𝐵 ) |
103 |
56 101 102
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐵 ) ) = 𝐵 ) |
104 |
65 97 103
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) |
105 |
|
oveq1 |
⊢ ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
106 |
105
|
eqeq1d |
⊢ ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 → ( ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ↔ ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) ) |
107 |
104 106
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) ) |
108 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
109 |
108
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑘 ∈ ℝ ) |
110 |
|
ltp1 |
⊢ ( 𝑘 ∈ ℝ → 𝑘 < ( 𝑘 + 1 ) ) |
111 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
112 |
|
ltnle |
⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑘 < ( 𝑘 + 1 ) ↔ ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
113 |
111 112
|
mpdan |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 < ( 𝑘 + 1 ) ↔ ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
114 |
110 113
|
mpbid |
⊢ ( 𝑘 ∈ ℝ → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
115 |
109 114
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
116 |
87
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑘 + 1 ) ≤ 𝑘 ↔ 𝑃 ≤ 𝑘 ) ) |
117 |
115 116
|
mtbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ¬ 𝑃 ≤ 𝑘 ) |
118 |
117
|
iffalsed |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) = 0 ) |
119 |
118
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 ) ) |
120 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
121 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
122 |
120 121
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
123 |
|
seqp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
124 |
122 123
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
125 |
124
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
126 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
127 |
57
|
simprd |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
128 |
127
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ ) |
129 |
|
nnz |
⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ) |
130 |
|
nnne0 |
⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) |
131 |
129 130
|
jca |
⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) ) |
132 |
128 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) ) |
133 |
|
nnz |
⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
134 |
|
nnne0 |
⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) |
135 |
133 134
|
jca |
⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) ) |
136 |
61 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) ) |
137 |
|
pcmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) ∧ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
138 |
126 132 136 137
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
139 |
125 138
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
140 |
139
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
141 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
142 |
4 141
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
143 |
142
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ∈ ℝ ) |
145 |
144
|
leidd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ≤ 𝑃 ) |
146 |
145 87
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) |
147 |
146
|
iftrued |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) = 𝐵 ) |
148 |
140 147
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ↔ ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) ) |
149 |
107 119 148
|
3imtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
150 |
149
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) = 𝑃 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
151 |
139
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
152 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑘 + 1 ) ≠ 𝑃 ) |
153 |
152
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → 𝑃 ≠ ( 𝑘 + 1 ) ) |
154 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → 𝑃 ∈ ℙ ) |
155 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑘 + 1 ) ∈ ℙ ) |
156 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) |
157 |
75
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 |
158 |
81
|
eleq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐴 ∈ ℕ0 ↔ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) ) |
159 |
157 158
|
rspc |
⊢ ( ( 𝑘 + 1 ) ∈ ℙ → ( ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) ) |
160 |
155 156 159
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) |
161 |
|
prmdvdsexpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑘 + 1 ) ∈ ℙ ∧ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) → 𝑃 = ( 𝑘 + 1 ) ) ) |
162 |
154 155 160 161
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) → 𝑃 = ( 𝑘 + 1 ) ) ) |
163 |
162
|
necon3ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 ≠ ( 𝑘 + 1 ) → ¬ 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
164 |
153 163
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ¬ 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
165 |
59
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
166 |
165 69 85
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
167 |
|
iftrue |
⊢ ( ( 𝑘 + 1 ) ∈ ℙ → if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
168 |
166 167
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
169 |
168
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
170 |
164 169
|
mtbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ¬ 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
171 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝐹 : ℕ ⟶ ℕ ) |
172 |
171 165 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
173 |
172
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
174 |
|
pceq0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) → ( ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ↔ ¬ 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
175 |
154 173 174
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ↔ ¬ 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
176 |
170 175
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
177 |
|
iffalse |
⊢ ( ¬ ( 𝑘 + 1 ) ∈ ℙ → if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) = 1 ) |
178 |
166 177
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 1 ) |
179 |
178
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt 1 ) ) |
180 |
4 43
|
syl |
⊢ ( 𝜑 → ( 𝑃 pCnt 1 ) = 0 ) |
181 |
180
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt 1 ) = 0 ) |
182 |
179 181
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
183 |
176 182
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
184 |
183
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + 0 ) ) |
185 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑃 ∈ ℙ ) |
186 |
128
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ ) |
187 |
185 186
|
pccld |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ∈ ℕ0 ) |
188 |
187
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ∈ ℂ ) |
189 |
188
|
addid1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + 0 ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
190 |
151 184 189
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
191 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑃 ∈ ℕ ) |
192 |
191
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑃 ∈ ℝ ) |
193 |
165
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
194 |
192 193
|
ltlend |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 < ( 𝑘 + 1 ) ↔ ( 𝑃 ≤ ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ) |
195 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑘 ∈ ℕ ) |
196 |
|
nnleltp1 |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ≤ 𝑘 ↔ 𝑃 < ( 𝑘 + 1 ) ) ) |
197 |
191 195 196
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 ≤ 𝑘 ↔ 𝑃 < ( 𝑘 + 1 ) ) ) |
198 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑘 + 1 ) ≠ 𝑃 ) |
199 |
198
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 ≤ ( 𝑘 + 1 ) ↔ ( 𝑃 ≤ ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ) |
200 |
194 197 199
|
3bitr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 ≤ ( 𝑘 + 1 ) ↔ 𝑃 ≤ 𝑘 ) ) |
201 |
200
|
ifbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) |
202 |
190 201
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) ) |
203 |
202
|
biimprd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
204 |
203
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ≠ 𝑃 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
205 |
150 204
|
pm2.61dne |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
206 |
205
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
207 |
206
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) → ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
208 |
11 17 23 29 55 207
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) ) |
209 |
3 208
|
mpcom |
⊢ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) |