Step |
Hyp |
Ref |
Expression |
1 |
|
pcmpt.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) |
2 |
|
pcmpt.2 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) |
3 |
|
pm2.27 |
⊢ ( 𝑛 ∈ ℙ → ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℕ0 ) ) |
4 |
|
iftrue |
⊢ ( 𝑛 ∈ ℙ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = ( 𝑛 ↑ 𝐴 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = ( 𝑛 ↑ 𝐴 ) ) |
6 |
|
prmnn |
⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ℕ ) |
7 |
|
nnexpcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑛 ↑ 𝐴 ) ∈ ℕ ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑛 ↑ 𝐴 ) ∈ ℕ ) |
9 |
5 8
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
10 |
9
|
ex |
⊢ ( 𝑛 ∈ ℙ → ( 𝐴 ∈ ℕ0 → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
11 |
3 10
|
syld |
⊢ ( 𝑛 ∈ ℙ → ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
12 |
|
iffalse |
⊢ ( ¬ 𝑛 ∈ ℙ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = 1 ) |
13 |
|
1nn |
⊢ 1 ∈ ℕ |
14 |
12 13
|
eqeltrdi |
⊢ ( ¬ 𝑛 ∈ ℙ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
15 |
14
|
a1d |
⊢ ( ¬ 𝑛 ∈ ℙ → ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
16 |
11 15
|
pm2.61i |
⊢ ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
17 |
16
|
a1d |
⊢ ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
18 |
17
|
ralimi2 |
⊢ ( ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
19 |
2 18
|
syl |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
20 |
1
|
fmpt |
⊢ ( ∀ 𝑛 ∈ ℕ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ↔ 𝐹 : ℕ ⟶ ℕ ) |
21 |
19 20
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℕ ) |
22 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
23 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
24 |
21
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ ) |
25 |
|
nnmulcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑘 · 𝑝 ) ∈ ℕ ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑘 · 𝑝 ) ∈ ℕ ) |
27 |
22 23 24 26
|
seqf |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
28 |
21 27
|
jca |
⊢ ( 𝜑 → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |