| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pcmpt.1 | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ 𝐴 ) ,  1 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pcmpt.2 | 
							⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℙ 𝐴  ∈  ℕ0 )  | 
						
						
							| 3 | 
							
								
							 | 
							pcmpt.3 | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 4 | 
							
								
							 | 
							pcmptdvds.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑚 𝐴  ∈  ℕ0  | 
						
						
							| 6 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑛 ⦋ 𝑚  /  𝑛 ⦌ 𝐴  | 
						
						
							| 7 | 
							
								6
							 | 
							nfel1 | 
							⊢ Ⅎ 𝑛 ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  ℕ0  | 
						
						
							| 8 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑛  =  𝑚  →  𝐴  =  ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  | 
						
						
							| 9 | 
							
								8
							 | 
							eleq1d | 
							⊢ ( 𝑛  =  𝑚  →  ( 𝐴  ∈  ℕ0  ↔  ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  ℕ0 ) )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑛  ∈  ℙ 𝐴  ∈  ℕ0  ↔  ∀ 𝑚  ∈  ℙ ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℙ ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  ℕ0 )  | 
						
						
							| 12 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑚  =  𝑝  →  ⦋ 𝑚  /  𝑛 ⦌ 𝐴  =  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq1d | 
							⊢ ( 𝑚  =  𝑝  →  ( ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  ℕ0  ↔  ⦋ 𝑝  /  𝑛 ⦌ 𝐴  ∈  ℕ0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rspcv | 
							⊢ ( 𝑝  ∈  ℙ  →  ( ∀ 𝑚  ∈  ℙ ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  ℕ0  →  ⦋ 𝑝  /  𝑛 ⦌ 𝐴  ∈  ℕ0 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							mpan9 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ⦋ 𝑝  /  𝑛 ⦌ 𝐴  ∈  ℕ0 )  | 
						
						
							| 16 | 
							
								15
							 | 
							nn0ge0d | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  0  ≤  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							0le0 | 
							⊢ 0  ≤  0  | 
						
						
							| 18 | 
							
								
							 | 
							breq2 | 
							⊢ ( ⦋ 𝑝  /  𝑛 ⦌ 𝐴  =  if ( ( 𝑝  ≤  𝑀  ∧  ¬  𝑝  ≤  𝑁 ) ,  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 ,  0 )  →  ( 0  ≤  ⦋ 𝑝  /  𝑛 ⦌ 𝐴  ↔  0  ≤  if ( ( 𝑝  ≤  𝑀  ∧  ¬  𝑝  ≤  𝑁 ) ,  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 ,  0 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							breq2 | 
							⊢ ( 0  =  if ( ( 𝑝  ≤  𝑀  ∧  ¬  𝑝  ≤  𝑁 ) ,  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 ,  0 )  →  ( 0  ≤  0  ↔  0  ≤  if ( ( 𝑝  ≤  𝑀  ∧  ¬  𝑝  ≤  𝑁 ) ,  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 ,  0 ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							ifboth | 
							⊢ ( ( 0  ≤  ⦋ 𝑝  /  𝑛 ⦌ 𝐴  ∧  0  ≤  0 )  →  0  ≤  if ( ( 𝑝  ≤  𝑀  ∧  ¬  𝑝  ≤  𝑁 ) ,  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 ,  0 ) )  | 
						
						
							| 21 | 
							
								16 17 20
							 | 
							sylancl | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  0  ≤  if ( ( 𝑝  ≤  𝑀  ∧  ¬  𝑝  ≤  𝑁 ) ,  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 ,  0 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑚 if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ 𝐴 ) ,  1 )  | 
						
						
							| 23 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑛 𝑚  ∈  ℙ  | 
						
						
							| 24 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑛 𝑚  | 
						
						
							| 25 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑛 ↑  | 
						
						
							| 26 | 
							
								24 25 6
							 | 
							nfov | 
							⊢ Ⅎ 𝑛 ( 𝑚 ↑ ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  | 
						
						
							| 27 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑛 1  | 
						
						
							| 28 | 
							
								23 26 27
							 | 
							nfif | 
							⊢ Ⅎ 𝑛 if ( 𝑚  ∈  ℙ ,  ( 𝑚 ↑ ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ,  1 )  | 
						
						
							| 29 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈  ℙ  ↔  𝑚  ∈  ℙ ) )  | 
						
						
							| 30 | 
							
								
							 | 
							id | 
							⊢ ( 𝑛  =  𝑚  →  𝑛  =  𝑚 )  | 
						
						
							| 31 | 
							
								30 8
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝑚  →  ( 𝑛 ↑ 𝐴 )  =  ( 𝑚 ↑ ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							ifbieq1d | 
							⊢ ( 𝑛  =  𝑚  →  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ 𝐴 ) ,  1 )  =  if ( 𝑚  ∈  ℙ ,  ( 𝑚 ↑ ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ,  1 ) )  | 
						
						
							| 33 | 
							
								22 28 32
							 | 
							cbvmpt | 
							⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ 𝐴 ) ,  1 ) )  =  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 𝑚 ↑ ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ,  1 ) )  | 
						
						
							| 34 | 
							
								1 33
							 | 
							eqtri | 
							⊢ 𝐹  =  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( 𝑚 ↑ ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ,  1 ) )  | 
						
						
							| 35 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ∀ 𝑚  ∈  ℙ ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  ℕ0 )  | 
						
						
							| 36 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑁  ∈  ℕ )  | 
						
						
							| 37 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℙ )  | 
						
						
							| 38 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 39 | 
							
								34 35 36 37 12 38
							 | 
							pcmpt2 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) )  =  if ( ( 𝑝  ≤  𝑀  ∧  ¬  𝑝  ≤  𝑁 ) ,  ⦋ 𝑝  /  𝑛 ⦌ 𝐴 ,  0 ) )  | 
						
						
							| 40 | 
							
								21 39
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  0  ≤  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑝  ∈  ℙ 0  ≤  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) ) )  | 
						
						
							| 42 | 
							
								1 2
							 | 
							pcmptcl | 
							⊢ ( 𝜑  →  ( 𝐹 : ℕ ⟶ ℕ  ∧  seq 1 (  ·  ,  𝐹 ) : ℕ ⟶ ℕ ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							simprd | 
							⊢ ( 𝜑  →  seq 1 (  ·  ,  𝐹 ) : ℕ ⟶ ℕ )  | 
						
						
							| 44 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℕ )  | 
						
						
							| 45 | 
							
								3 4 44
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℕ )  | 
						
						
							| 47 | 
							
								46
							 | 
							nnzd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℤ )  | 
						
						
							| 48 | 
							
								43 3
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℕ )  | 
						
						
							| 49 | 
							
								
							 | 
							znq | 
							⊢ ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℤ  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℕ )  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℚ )  | 
						
						
							| 50 | 
							
								47 48 49
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℚ )  | 
						
						
							| 51 | 
							
								
							 | 
							pcz | 
							⊢ ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℚ  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℤ  ↔  ∀ 𝑝  ∈  ℙ 0  ≤  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) ) ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℤ  ↔  ∀ 𝑝  ∈  ℙ 0  ≤  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) ) ) )  | 
						
						
							| 53 | 
							
								41 52
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℤ )  | 
						
						
							| 54 | 
							
								48
							 | 
							nnzd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℤ )  | 
						
						
							| 55 | 
							
								48
							 | 
							nnne0d | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ≠  0 )  | 
						
						
							| 56 | 
							
								
							 | 
							dvdsval2 | 
							⊢ ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℤ  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ≠  0  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℤ )  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∥  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ↔  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℤ ) )  | 
						
						
							| 57 | 
							
								54 55 47 56
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∥  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ↔  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  ∈  ℤ ) )  | 
						
						
							| 58 | 
							
								53 57
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∥  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  |