Step |
Hyp |
Ref |
Expression |
1 |
|
pcmpt.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) |
2 |
|
pcmpt.2 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) |
3 |
|
pcmpt.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
pcmptdvds.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑚 𝐴 ∈ ℕ0 |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
7 |
6
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℕ0 |
8 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
9 |
8
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ∈ ℕ0 ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) ) |
10 |
5 7 9
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ↔ ∀ 𝑚 ∈ ℙ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) |
11 |
2 10
|
sylib |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℙ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) |
12 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑝 → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = ⦋ 𝑝 / 𝑛 ⦌ 𝐴 ) |
13 |
12
|
eleq1d |
⊢ ( 𝑚 = 𝑝 → ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ↔ ⦋ 𝑝 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) ) |
14 |
13
|
rspcv |
⊢ ( 𝑝 ∈ ℙ → ( ∀ 𝑚 ∈ ℙ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℕ0 → ⦋ 𝑝 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) ) |
15 |
11 14
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ⦋ 𝑝 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) |
16 |
15
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 0 ≤ ⦋ 𝑝 / 𝑛 ⦌ 𝐴 ) |
17 |
|
0le0 |
⊢ 0 ≤ 0 |
18 |
|
breq2 |
⊢ ( ⦋ 𝑝 / 𝑛 ⦌ 𝐴 = if ( ( 𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁 ) , ⦋ 𝑝 / 𝑛 ⦌ 𝐴 , 0 ) → ( 0 ≤ ⦋ 𝑝 / 𝑛 ⦌ 𝐴 ↔ 0 ≤ if ( ( 𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁 ) , ⦋ 𝑝 / 𝑛 ⦌ 𝐴 , 0 ) ) ) |
19 |
|
breq2 |
⊢ ( 0 = if ( ( 𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁 ) , ⦋ 𝑝 / 𝑛 ⦌ 𝐴 , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( ( 𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁 ) , ⦋ 𝑝 / 𝑛 ⦌ 𝐴 , 0 ) ) ) |
20 |
18 19
|
ifboth |
⊢ ( ( 0 ≤ ⦋ 𝑝 / 𝑛 ⦌ 𝐴 ∧ 0 ≤ 0 ) → 0 ≤ if ( ( 𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁 ) , ⦋ 𝑝 / 𝑛 ⦌ 𝐴 , 0 ) ) |
21 |
16 17 20
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 0 ≤ if ( ( 𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁 ) , ⦋ 𝑝 / 𝑛 ⦌ 𝐴 , 0 ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑚 if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) |
23 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 ∈ ℙ |
24 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑚 |
25 |
|
nfcv |
⊢ Ⅎ 𝑛 ↑ |
26 |
24 25 6
|
nfov |
⊢ Ⅎ 𝑛 ( 𝑚 ↑ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑛 1 |
28 |
23 26 27
|
nfif |
⊢ Ⅎ 𝑛 if ( 𝑚 ∈ ℙ , ( 𝑚 ↑ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) , 1 ) |
29 |
|
eleq1w |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ ) ) |
30 |
|
id |
⊢ ( 𝑛 = 𝑚 → 𝑛 = 𝑚 ) |
31 |
30 8
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ↑ 𝐴 ) = ( 𝑚 ↑ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
32 |
29 31
|
ifbieq1d |
⊢ ( 𝑛 = 𝑚 → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = if ( 𝑚 ∈ ℙ , ( 𝑚 ↑ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
33 |
22 28 32
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 𝑚 ↑ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
34 |
1 33
|
eqtri |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 𝑚 ↑ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ∀ 𝑚 ∈ ℙ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) |
36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
39 |
34 35 36 37 12 38
|
pcmpt2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) = if ( ( 𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁 ) , ⦋ 𝑝 / 𝑛 ⦌ 𝐴 , 0 ) ) |
40 |
21 39
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) ) |
41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) ) |
42 |
1 2
|
pcmptcl |
⊢ ( 𝜑 → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |
43 |
42
|
simprd |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
44 |
|
eluznn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
45 |
3 4 44
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
46 |
43 45
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℕ ) |
47 |
46
|
nnzd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℤ ) |
48 |
43 3
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ ) |
49 |
|
znq |
⊢ ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℚ ) |
50 |
47 48 49
|
syl2anc |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℚ ) |
51 |
|
pcz |
⊢ ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℚ → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℤ ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
52 |
50 51
|
syl |
⊢ ( 𝜑 → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℤ ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
53 |
41 52
|
mpbird |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℤ ) |
54 |
48
|
nnzd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℤ ) |
55 |
48
|
nnne0d |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |
56 |
|
dvdsval2 |
⊢ ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℤ ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∥ ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ↔ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℤ ) ) |
57 |
54 55 47 56
|
syl3anc |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∥ ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ↔ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℤ ) ) |
58 |
53 57
|
mpbird |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∥ ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) |