Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) |
2 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) |
3 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) |
4 |
1 2 3
|
pcpremul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) + sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
5 |
1
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
7 |
2
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
9 |
6 8
|
oveq12d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) + sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
10 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) |
11 |
10
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) |
12 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
13 |
12
|
anim1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
14 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
15 |
14
|
anim1i |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
16 |
|
mulne0 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
17 |
13 15 16
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
18 |
11 17
|
jca |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℤ ∧ ( 𝐴 · 𝐵 ) ≠ 0 ) ) |
19 |
3
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 · 𝐵 ) ∈ ℤ ∧ ( 𝐴 · 𝐵 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
21 |
20
|
3impb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
22 |
4 9 21
|
3eqtr4rd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) |