Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcndvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 2 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
| 4 | pczndvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) |