Metamath Proof Explorer


Theorem pcndvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcndvds ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 )

Proof

Step Hyp Ref Expression
1 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
2 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
3 1 2 jca ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) )
4 pczndvds ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 )
5 3 4 sylan2 ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 )