Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pcndvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
2 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
3 | 1 2 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
4 | pczndvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) | |
5 | 3 4 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) |