Metamath Proof Explorer


Theorem pcndvds2

Description: The remainder after dividing out all factors of P is not divisible by P . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcndvds2 ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
2 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
3 1 2 jca ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) )
4 pczndvds2 ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
5 3 4 sylan2 ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )