Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
2 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
3 |
2
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ℂ ) |
4 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
5 |
4
|
ad2antll |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
6 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
7 |
6
|
ad2antll |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
8 |
3 5 7
|
divnegd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → - ( 𝑥 / 𝑦 ) = ( - 𝑥 / 𝑦 ) ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) ) |
10 |
|
neg0 |
⊢ - 0 = 0 |
11 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
12 |
11
|
negeqd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → - 𝑥 = - 0 ) |
13 |
10 12 11
|
3eqtr4a |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → - 𝑥 = 𝑥 ) |
14 |
13
|
oveq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → ( - 𝑥 / 𝑦 ) = ( 𝑥 / 𝑦 ) ) |
15 |
14
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 = 0 ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
16 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑃 ∈ ℙ ) |
17 |
|
simplrl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ℤ ) |
18 |
17
|
znegcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → - 𝑥 ∈ ℤ ) |
19 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) |
20 |
2
|
negne0bd |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ≠ 0 ↔ - 𝑥 ≠ 0 ) ) |
21 |
17 20
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑥 ≠ 0 ↔ - 𝑥 ≠ 0 ) ) |
22 |
19 21
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → - 𝑥 ≠ 0 ) |
23 |
|
simplrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → 𝑦 ∈ ℕ ) |
24 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( - 𝑥 ∈ ℤ ∧ - 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
25 |
16 18 22 23 24
|
syl121anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
26 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
27 |
16 17 19 23 26
|
syl121anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
28 |
|
eqid |
⊢ sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) |
29 |
28
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( - 𝑥 ∈ ℤ ∧ - 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt - 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
30 |
16 18 22 29
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt - 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
31 |
|
eqid |
⊢ sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) |
32 |
31
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) ) |
33 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
34 |
|
zexpcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑦 ) ∈ ℤ ) |
35 |
33 34
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑦 ) ∈ ℤ ) |
36 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ℤ ) |
37 |
|
dvdsnegb |
⊢ ( ( ( 𝑃 ↑ 𝑦 ) ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 ) ) |
38 |
35 36 37
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 ) ) |
39 |
38
|
an32s |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 ) ) |
40 |
39
|
rabbidva |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } = { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } ) |
41 |
40
|
supeq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
42 |
32 41
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
43 |
16 17 19 42
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt 𝑥 ) = sup ( { 𝑦 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑦 ) ∥ - 𝑥 } , ℝ , < ) ) |
44 |
30 43
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt - 𝑥 ) = ( 𝑃 pCnt 𝑥 ) ) |
45 |
44
|
oveq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
46 |
27 45
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt - 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
47 |
25 46
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 ≠ 0 ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
48 |
15 47
|
pm2.61dane |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt ( - 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
49 |
9 48
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
50 |
|
negeq |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → - 𝐴 = - ( 𝑥 / 𝑦 ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) ) |
52 |
|
oveq2 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
53 |
51 52
|
eqeq12d |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ↔ ( 𝑃 pCnt - ( 𝑥 / 𝑦 ) ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) ) |
54 |
49 53
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
55 |
54
|
rexlimdvva |
⊢ ( 𝑃 ∈ ℙ → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
56 |
1 55
|
syl5bi |
⊢ ( 𝑃 ∈ ℙ → ( 𝐴 ∈ ℚ → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
57 |
56
|
imp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) |