Metamath Proof Explorer


Theorem pcpre1

Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses pclem.1 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 }
pclem.2 𝑆 = sup ( 𝐴 , ℝ , < )
Assertion pcpre1 ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 = 0 )

Proof

Step Hyp Ref Expression
1 pclem.1 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 }
2 pclem.2 𝑆 = sup ( 𝐴 , ℝ , < )
3 1z 1 ∈ ℤ
4 eleq1 ( 𝑁 = 1 → ( 𝑁 ∈ ℤ ↔ 1 ∈ ℤ ) )
5 3 4 mpbiri ( 𝑁 = 1 → 𝑁 ∈ ℤ )
6 ax-1ne0 1 ≠ 0
7 neeq1 ( 𝑁 = 1 → ( 𝑁 ≠ 0 ↔ 1 ≠ 0 ) )
8 6 7 mpbiri ( 𝑁 = 1 → 𝑁 ≠ 0 )
9 5 8 jca ( 𝑁 = 1 → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) )
10 1 2 pcprecl ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃𝑆 ) ∥ 𝑁 ) )
11 9 10 sylan2 ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃𝑆 ) ∥ 𝑁 ) )
12 11 simprd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃𝑆 ) ∥ 𝑁 )
13 simpr ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑁 = 1 )
14 12 13 breqtrd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃𝑆 ) ∥ 1 )
15 eluz2nn ( 𝑃 ∈ ( ℤ ‘ 2 ) → 𝑃 ∈ ℕ )
16 15 adantr ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℕ )
17 11 simpld ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℕ0 )
18 16 17 nnexpcld ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃𝑆 ) ∈ ℕ )
19 18 nnzd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃𝑆 ) ∈ ℤ )
20 1nn 1 ∈ ℕ
21 dvdsle ( ( ( 𝑃𝑆 ) ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( 𝑃𝑆 ) ∥ 1 → ( 𝑃𝑆 ) ≤ 1 ) )
22 19 20 21 sylancl ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( ( 𝑃𝑆 ) ∥ 1 → ( 𝑃𝑆 ) ≤ 1 ) )
23 14 22 mpd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃𝑆 ) ≤ 1 )
24 16 nncnd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℂ )
25 24 exp0d ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 0 ) = 1 )
26 23 25 breqtrrd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃𝑆 ) ≤ ( 𝑃 ↑ 0 ) )
27 16 nnred ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℝ )
28 17 nn0zd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℤ )
29 0zd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 0 ∈ ℤ )
30 eluz2gt1 ( 𝑃 ∈ ( ℤ ‘ 2 ) → 1 < 𝑃 )
31 30 adantr ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 1 < 𝑃 )
32 27 28 29 31 leexp2d ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ≤ 0 ↔ ( 𝑃𝑆 ) ≤ ( 𝑃 ↑ 0 ) ) )
33 26 32 mpbird ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ≤ 0 )
34 10 simpld ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℕ0 )
35 9 34 sylan2 ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℕ0 )
36 nn0le0eq0 ( 𝑆 ∈ ℕ0 → ( 𝑆 ≤ 0 ↔ 𝑆 = 0 ) )
37 35 36 syl ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ≤ 0 ↔ 𝑆 = 0 ) )
38 33 37 mpbid ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 = 0 )