Step |
Hyp |
Ref |
Expression |
1 |
|
pclem.1 |
⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } |
2 |
|
pclem.2 |
⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) |
3 |
|
1z |
⊢ 1 ∈ ℤ |
4 |
|
eleq1 |
⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℤ ↔ 1 ∈ ℤ ) ) |
5 |
3 4
|
mpbiri |
⊢ ( 𝑁 = 1 → 𝑁 ∈ ℤ ) |
6 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
7 |
|
neeq1 |
⊢ ( 𝑁 = 1 → ( 𝑁 ≠ 0 ↔ 1 ≠ 0 ) ) |
8 |
6 7
|
mpbiri |
⊢ ( 𝑁 = 1 → 𝑁 ≠ 0 ) |
9 |
5 8
|
jca |
⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
10 |
1 2
|
pcprecl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
12 |
11
|
simprd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) |
13 |
|
simpr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑁 = 1 ) |
14 |
12 13
|
breqtrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∥ 1 ) |
15 |
|
eluz2nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) |
16 |
15
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℕ ) |
17 |
11
|
simpld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℕ0 ) |
18 |
16 17
|
nnexpcld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∈ ℕ ) |
19 |
18
|
nnzd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∈ ℤ ) |
20 |
|
1nn |
⊢ 1 ∈ ℕ |
21 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ 𝑆 ) ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑆 ) ∥ 1 → ( 𝑃 ↑ 𝑆 ) ≤ 1 ) ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( ( 𝑃 ↑ 𝑆 ) ∥ 1 → ( 𝑃 ↑ 𝑆 ) ≤ 1 ) ) |
23 |
14 22
|
mpd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ≤ 1 ) |
24 |
16
|
nncnd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℂ ) |
25 |
24
|
exp0d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 0 ) = 1 ) |
26 |
23 25
|
breqtrrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ≤ ( 𝑃 ↑ 0 ) ) |
27 |
16
|
nnred |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℝ ) |
28 |
17
|
nn0zd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℤ ) |
29 |
|
0zd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 0 ∈ ℤ ) |
30 |
|
eluz2gt1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) |
31 |
30
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 1 < 𝑃 ) |
32 |
27 28 29 31
|
leexp2d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ≤ 0 ↔ ( 𝑃 ↑ 𝑆 ) ≤ ( 𝑃 ↑ 0 ) ) ) |
33 |
26 32
|
mpbird |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ≤ 0 ) |
34 |
10
|
simpld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
35 |
9 34
|
sylan2 |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℕ0 ) |
36 |
|
nn0le0eq0 |
⊢ ( 𝑆 ∈ ℕ0 → ( 𝑆 ≤ 0 ↔ 𝑆 = 0 ) ) |
37 |
35 36
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ≤ 0 ↔ 𝑆 = 0 ) ) |
38 |
33 37
|
mpbid |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 = 0 ) |