| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclem.1 |
⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } |
| 2 |
|
pclem.2 |
⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) |
| 3 |
1
|
pclem |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 4 |
|
suprzcl2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 6 |
2 5
|
eqeltrid |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ 𝐴 ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑆 → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ 𝑆 ) ) |
| 8 |
7
|
breq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑥 ) ) |
| 10 |
9
|
breq1d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ) ) |
| 11 |
10
|
cbvrabv |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
| 12 |
1 11
|
eqtri |
⊢ 𝐴 = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
| 13 |
8 12
|
elrab2 |
⊢ ( 𝑆 ∈ 𝐴 ↔ ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 14 |
6 13
|
sylib |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |