Step |
Hyp |
Ref |
Expression |
1 |
|
pclem.1 |
⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } |
2 |
|
pclem.2 |
⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) |
3 |
1 2
|
pcprecl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
4 |
3
|
simpld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
5 |
|
nn0re |
⊢ ( 𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ ) |
6 |
|
ltp1 |
⊢ ( 𝑆 ∈ ℝ → 𝑆 < ( 𝑆 + 1 ) ) |
7 |
|
peano2re |
⊢ ( 𝑆 ∈ ℝ → ( 𝑆 + 1 ) ∈ ℝ ) |
8 |
|
ltnle |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 𝑆 + 1 ) ∈ ℝ ) → ( 𝑆 < ( 𝑆 + 1 ) ↔ ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
9 |
7 8
|
mpdan |
⊢ ( 𝑆 ∈ ℝ → ( 𝑆 < ( 𝑆 + 1 ) ↔ ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
10 |
6 9
|
mpbid |
⊢ ( 𝑆 ∈ ℝ → ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) |
11 |
4 5 10
|
3syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑆 + 1 ) ≤ 𝑆 ) |
12 |
1
|
pclem |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
13 |
|
peano2nn0 |
⊢ ( 𝑆 ∈ ℕ0 → ( 𝑆 + 1 ) ∈ ℕ0 ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑆 + 1 ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( 𝑆 + 1 ) ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑥 = ( 𝑆 + 1 ) → ( ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ↔ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑥 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ) ) |
18 |
17
|
cbvrabv |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
19 |
1 18
|
eqtri |
⊢ 𝐴 = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
20 |
15 19
|
elrab2 |
⊢ ( ( 𝑆 + 1 ) ∈ 𝐴 ↔ ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) ) |
21 |
20
|
simplbi2 |
⊢ ( ( 𝑆 + 1 ) ∈ ℕ0 → ( ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 → ( 𝑆 + 1 ) ∈ 𝐴 ) ) |
22 |
4 13 21
|
3syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 → ( 𝑆 + 1 ) ∈ 𝐴 ) ) |
23 |
|
suprzub |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ( 𝑆 + 1 ) ∈ 𝐴 ) → ( 𝑆 + 1 ) ≤ sup ( 𝐴 , ℝ , < ) ) |
24 |
23 2
|
breqtrrdi |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ ( 𝑆 + 1 ) ∈ 𝐴 ) → ( 𝑆 + 1 ) ≤ 𝑆 ) |
25 |
24
|
3expia |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( ( 𝑆 + 1 ) ∈ 𝐴 → ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( ( 𝑆 + 1 ) ∈ 𝐴 → ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
27 |
12 22 26
|
sylsyld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 → ( 𝑆 + 1 ) ≤ 𝑆 ) ) |
28 |
11 27
|
mtod |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( 𝑆 + 1 ) ) ∥ 𝑁 ) |