Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → 𝑃 ∈ ℤ ) |
3 |
|
zexpcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) |
4 |
2 3
|
sylan |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) |
5 |
|
iddvds |
⊢ ( ( 𝑃 ↑ 𝑛 ) ∈ ℤ → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
7 |
|
breq1 |
⊢ ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
8 |
6 7
|
syl5ibrcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
9 |
8
|
reximdva |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
10 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
11 |
9 10
|
sylibd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
12 |
|
pccl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
13 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
14 |
13
|
rspceeqv |
⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ∧ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
15 |
14
|
ex |
⊢ ( ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 → ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
16 |
12 15
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
17 |
11 16
|
impbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |