| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝐴  ∈  ℕ ) | 
						
							| 2 | 1 | nnnn0d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 3 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 5 |  | pccl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 7 | 4 6 | nnexpcld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ ) | 
						
							| 8 | 7 | nnnn0d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ0 ) | 
						
							| 9 | 6 | nn0red | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℝ ) | 
						
							| 10 | 9 | leidd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 12 | 6 | nn0zd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℤ ) | 
						
							| 13 |  | pcid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  pCnt  𝐴 )  ∈  ℤ )  →  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 15 | 10 14 | breqtrrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  𝑝  =  𝑃 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  𝐴 )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 19 | 17 | oveq1d | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  =  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 20 | 16 18 19 | 3brtr4d | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 21 |  | simplrr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 22 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℤ ) | 
						
							| 24 | 1 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  𝐴  ∈  ℕ ) | 
						
							| 25 | 24 | nnzd | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  𝐴  ∈  ℤ ) | 
						
							| 26 |  | simprl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 27 | 4 26 | nnexpcld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑃 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 29 | 28 | nnzd | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑃 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 30 |  | dvdstr | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑛 )  ∈  ℤ )  →  ( ( 𝑝  ∥  𝐴  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) )  →  𝑝  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 31 | 23 25 29 30 | syl3anc | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  ∥  𝐴  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) )  →  𝑝  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 32 | 21 31 | mpan2d | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝐴  →  𝑝  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℙ ) | 
						
							| 34 | 11 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  𝑃  ∈  ℙ ) | 
						
							| 35 |  | simplrl | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 36 |  | prmdvdsexpr | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑝  ∥  ( 𝑃 ↑ 𝑛 )  →  𝑝  =  𝑃 ) ) | 
						
							| 37 | 33 34 35 36 | syl3anc | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  ( 𝑃 ↑ 𝑛 )  →  𝑝  =  𝑃 ) ) | 
						
							| 38 | 32 37 | syld | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝐴  →  𝑝  =  𝑃 ) ) | 
						
							| 39 | 38 | necon3ad | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ≠  𝑃  →  ¬  𝑝  ∥  𝐴 ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ¬  𝑝  ∥  𝐴 ) | 
						
							| 41 |  | simplr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  𝑝  ∈  ℙ ) | 
						
							| 42 | 1 | ad2antrr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  𝐴  ∈  ℕ ) | 
						
							| 43 |  | pceq0 | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑝  pCnt  𝐴 )  =  0  ↔  ¬  𝑝  ∥  𝐴 ) ) | 
						
							| 44 | 41 42 43 | syl2anc | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( ( 𝑝  pCnt  𝐴 )  =  0  ↔  ¬  𝑝  ∥  𝐴 ) ) | 
						
							| 45 | 40 44 | mpbird | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑝  pCnt  𝐴 )  =  0 ) | 
						
							| 46 | 7 | ad2antrr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ ) | 
						
							| 47 | 41 46 | pccld | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ0 ) | 
						
							| 48 | 47 | nn0ge0d | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  0  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 49 | 45 48 | eqbrtrd | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 50 | 20 49 | pm2.61dane | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 51 | 50 | ralrimiva | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 52 | 1 | nnzd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝐴  ∈  ℤ ) | 
						
							| 53 | 7 | nnzd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℤ ) | 
						
							| 54 |  | pc2dvds | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℤ )  →  ( 𝐴  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 55 | 52 53 54 | syl2anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝐴  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 56 | 51 55 | mpbird | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝐴  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 57 |  | pcdvds | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  𝐴 ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  𝐴 ) | 
						
							| 59 |  | dvdseq | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ0 )  ∧  ( 𝐴  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  𝐴 ) )  →  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 60 | 2 8 56 58 59 | syl22anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) )  →  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 61 | 60 | rexlimdvaa | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  →  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 62 | 3 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  𝑃  ∈  ℕ ) | 
						
							| 63 | 62 5 | nnexpcld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ ) | 
						
							| 64 | 63 | nnzd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℤ ) | 
						
							| 65 |  | iddvds | ⊢ ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℤ  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 67 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑃  pCnt  𝐴 )  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 68 | 67 | breq2d | ⊢ ( 𝑛  =  ( 𝑃  pCnt  𝐴 )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 69 | 68 | rspcev | ⊢ ( ( ( 𝑃  pCnt  𝐴 )  ∈  ℕ0  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 70 | 5 66 69 | syl2anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ∃ 𝑛  ∈  ℕ0 ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 71 |  | breq1 | ⊢ ( 𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 72 | 71 | rexbidv | ⊢ ( 𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  →  ( ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 73 | 70 72 | syl5ibrcom | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  →  ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 74 | 61 73 | impbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) |