Step |
Hyp |
Ref |
Expression |
1 |
|
pcprod.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
2 |
|
pccl |
⊢ ( ( 𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
3 |
2
|
ancoms |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ) → ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
4 |
3
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑛 ∈ ℙ ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ∀ 𝑛 ∈ ℙ ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
6 |
|
simpr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
7 |
|
simpl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → 𝑝 ∈ ℙ ) |
8 |
|
oveq1 |
⊢ ( 𝑛 = 𝑝 → ( 𝑛 pCnt 𝑁 ) = ( 𝑝 pCnt 𝑁 ) ) |
9 |
1 5 6 7 8
|
pcmpt |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) ) |
10 |
|
iftrue |
⊢ ( 𝑝 ≤ 𝑁 → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) |
12 |
|
iffalse |
⊢ ( ¬ 𝑝 ≤ 𝑁 → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = 0 ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = 0 ) |
14 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
15 |
|
dvdsle |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁 ) ) |
16 |
14 15
|
sylan |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁 ) ) |
17 |
16
|
con3dimp |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → ¬ 𝑝 ∥ 𝑁 ) |
18 |
|
pceq0 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑁 ) = 0 ↔ ¬ 𝑝 ∥ 𝑁 ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → ( ( 𝑝 pCnt 𝑁 ) = 0 ↔ ¬ 𝑝 ∥ 𝑁 ) ) |
20 |
17 19
|
mpbird |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → ( 𝑝 pCnt 𝑁 ) = 0 ) |
21 |
13 20
|
eqtr4d |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) |
22 |
11 21
|
pm2.61dan |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → if ( 𝑝 ≤ 𝑁 , ( 𝑝 pCnt 𝑁 ) , 0 ) = ( 𝑝 pCnt 𝑁 ) ) |
23 |
9 22
|
eqtrd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) |
24 |
23
|
ancoms |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) |
25 |
24
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) |
26 |
1 4
|
pcmptcl |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |
27 |
26
|
simprd |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
28 |
|
ffvelrn |
⊢ ( ( seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ ) |
29 |
27 28
|
mpancom |
⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ ) |
30 |
29
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ0 ) |
31 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
32 |
|
pc11 |
⊢ ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) = 𝑁 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) ) |
33 |
30 31 32
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) = 𝑁 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑝 pCnt 𝑁 ) ) ) |
34 |
25 33
|
mpbird |
⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) = 𝑁 ) |