Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℚ ) |
2 |
|
elq |
⊢ ( 𝑁 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) |
3 |
1 2
|
sylib |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) |
4 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
5 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
6 |
4 5
|
div0d |
⊢ ( 𝑦 ∈ ℕ → ( 0 / 𝑦 ) = 0 ) |
7 |
6
|
ad2antll |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 0 / 𝑦 ) = 0 ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
10 |
7 9
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
11 |
10
|
necon3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → 𝑥 ≠ 0 ) ) |
12 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ↔ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) ) |
13 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
14 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
15 |
14
|
nn0zd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℤ ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt 𝑥 ) ∈ ℤ ) |
17 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
18 |
17 5
|
jca |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) |
19 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℕ0 ) |
20 |
19
|
nn0zd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
21 |
18 20
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
23 |
16 22
|
zsubcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ) |
24 |
13 23
|
eqeltrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) |
25 |
24
|
3expb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) |
26 |
12 25
|
sylan2b |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) |
27 |
26
|
expr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 ≠ 0 → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) |
28 |
11 27
|
syld |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) |
29 |
|
neeq1 |
⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑁 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) |
30 |
|
oveq2 |
⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℤ ↔ ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) |
32 |
29 31
|
imbi12d |
⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ↔ ( ( 𝑥 / 𝑦 ) ≠ 0 → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) ) |
33 |
28 32
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
34 |
33
|
com23 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑁 ≠ 0 → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
35 |
34
|
impancom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
36 |
35
|
adantrl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
37 |
36
|
rexlimdvv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) |
38 |
3 37
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |