Step |
Hyp |
Ref |
Expression |
1 |
|
simp2l |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℚ ) |
2 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
3 |
1 2
|
sylib |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
4 |
|
simp3l |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℚ ) |
5 |
|
elq |
⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
6 |
4 5
|
sylib |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
7 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) |
8 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) |
9 |
|
simp2r |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) |
10 |
|
simp3r |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) |
11 |
9 10
|
jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) |
13 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝑃 ∈ ℙ ) |
14 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑦 ∈ ℕ ) |
15 |
14
|
nncnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
16 |
14
|
nnne0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
17 |
15 16
|
div0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 0 / 𝑦 ) = 0 ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
20 |
17 19
|
syl5ibrcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
21 |
20
|
necon3d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → 𝑥 ≠ 0 ) ) |
22 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑤 ∈ ℕ ) |
23 |
22
|
nncnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑤 ∈ ℂ ) |
24 |
22
|
nnne0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑤 ≠ 0 ) |
25 |
23 24
|
div0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 0 / 𝑤 ) = 0 ) |
26 |
|
oveq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = ( 0 / 𝑤 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑧 = 0 → ( ( 𝑧 / 𝑤 ) = 0 ↔ ( 0 / 𝑤 ) = 0 ) ) |
28 |
25 27
|
syl5ibrcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = 0 ) ) |
29 |
28
|
necon3d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑧 / 𝑤 ) ≠ 0 → 𝑧 ≠ 0 ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑃 ∈ ℙ ) |
31 |
|
simplrl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑥 ∈ ℤ ) |
32 |
|
simplrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑧 ∈ ℤ ) |
33 |
31 32
|
zmulcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑥 · 𝑧 ) ∈ ℤ ) |
34 |
31
|
zcnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑥 ∈ ℂ ) |
35 |
32
|
zcnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑧 ∈ ℂ ) |
36 |
|
simprrl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑥 ≠ 0 ) |
37 |
|
simprrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑧 ≠ 0 ) |
38 |
34 35 36 37
|
mulne0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑥 · 𝑧 ) ≠ 0 ) |
39 |
14
|
adantrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ∈ ℕ ) |
40 |
22
|
adantrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ∈ ℕ ) |
41 |
39 40
|
nnmulcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) |
42 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑥 · 𝑧 ) ∈ ℤ ∧ ( 𝑥 · 𝑧 ) ≠ 0 ) ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ) → ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) − ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) ) ) |
43 |
30 33 38 41 42
|
syl121anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) − ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) ) ) |
44 |
|
pcmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) = ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) ) |
45 |
30 31 36 32 37 44
|
syl122anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) = ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) ) |
46 |
39
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ∈ ℤ ) |
47 |
16
|
adantrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ≠ 0 ) |
48 |
40
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ∈ ℤ ) |
49 |
24
|
adantrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ≠ 0 ) |
50 |
|
pcmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℤ ∧ 𝑤 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) = ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) |
51 |
30 46 47 48 49 50
|
syl122anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) = ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) |
52 |
45 51
|
oveq12d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) − ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) − ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) ) |
53 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
54 |
30 31 36 53
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
55 |
54
|
nn0cnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℂ ) |
56 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
57 |
30 32 37 56
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
58 |
57
|
nn0cnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℂ ) |
59 |
30 39
|
pccld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℕ0 ) |
60 |
59
|
nn0cnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℂ ) |
61 |
30 40
|
pccld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℕ0 ) |
62 |
61
|
nn0cnd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℂ ) |
63 |
55 58 60 62
|
addsub4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) − ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) + ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
64 |
43 52 63
|
3eqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) + ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
65 |
15
|
adantrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ∈ ℂ ) |
66 |
23
|
adantrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ∈ ℂ ) |
67 |
34 65 35 66 47 49
|
divmuldivd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) |
68 |
67
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) ) |
69 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
70 |
30 31 36 39 69
|
syl121anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
71 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ∧ 𝑤 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
72 |
30 32 37 40 71
|
syl121anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
73 |
70 72
|
oveq12d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) + ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
74 |
64 68 73
|
3eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) |
75 |
74
|
expr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) |
76 |
21 29 75
|
syl2and |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( ( 𝑥 / 𝑦 ) ≠ 0 ∧ ( 𝑧 / 𝑤 ) ≠ 0 ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) |
77 |
|
neeq1 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) |
78 |
|
neeq1 |
⊢ ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐵 ≠ 0 ↔ ( 𝑧 / 𝑤 ) ≠ 0 ) ) |
79 |
77 78
|
bi2anan9 |
⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ↔ ( ( 𝑥 / 𝑦 ) ≠ 0 ∧ ( 𝑧 / 𝑤 ) ≠ 0 ) ) ) |
80 |
|
oveq12 |
⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 · 𝐵 ) = ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) |
81 |
80
|
oveq2d |
⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) ) |
82 |
|
oveq2 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
83 |
|
oveq2 |
⊢ ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝑃 pCnt 𝐵 ) = ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) |
84 |
82 83
|
oveqan12d |
⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) |
85 |
81 84
|
eqeq12d |
⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ↔ ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) |
86 |
79 85
|
imbi12d |
⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ↔ ( ( ( 𝑥 / 𝑦 ) ≠ 0 ∧ ( 𝑧 / 𝑤 ) ≠ 0 ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) ) |
87 |
76 86
|
syl5ibrcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) ) |
88 |
13 87
|
sylanl1 |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) ) |
89 |
12 88
|
mpid |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
90 |
89
|
rexlimdvva |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
91 |
8 90
|
syl5bir |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
92 |
91
|
rexlimdvva |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
93 |
7 92
|
syl5bir |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
94 |
3 6 93
|
mp2and |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) |