Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
zq |
⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) |
3 |
1 2
|
ax-mp |
⊢ 1 ∈ ℚ |
4 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
5 |
3 4
|
pm3.2i |
⊢ ( 1 ∈ ℚ ∧ 1 ≠ 0 ) |
6 |
|
pcqdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 1 ∈ ℚ ∧ 1 ≠ 0 ) ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt 𝐴 ) ) ) |
7 |
5 6
|
mp3an2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt 𝐴 ) ) ) |
8 |
|
pc1 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 1 ) = 0 ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝑃 pCnt 1 ) − ( 𝑃 pCnt 𝐴 ) ) = ( 0 − ( 𝑃 pCnt 𝐴 ) ) ) |
11 |
7 10
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = ( 0 − ( 𝑃 pCnt 𝐴 ) ) ) |
12 |
|
df-neg |
⊢ - ( 𝑃 pCnt 𝐴 ) = ( 0 − ( 𝑃 pCnt 𝐴 ) ) |
13 |
11 12
|
eqtr4di |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / 𝐴 ) ) = - ( 𝑃 pCnt 𝐴 ) ) |