Step |
Hyp |
Ref |
Expression |
1 |
|
pcval.1 |
⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) |
2 |
|
pcval.2 |
⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) |
3 |
|
simpr |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → 𝑟 = 𝑁 ) |
4 |
3
|
eqeq1d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( 𝑟 = 0 ↔ 𝑁 = 0 ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑟 = 𝑁 → ( 𝑟 = ( 𝑥 / 𝑦 ) ↔ 𝑁 = ( 𝑥 / 𝑦 ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑛 ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝑝 = 𝑃 → { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } ) |
9 |
8
|
supeq1d |
⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) ) |
10 |
9 1
|
eqtr4di |
⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = 𝑆 ) |
11 |
6
|
breq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ) ) |
12 |
11
|
rabbidv |
⊢ ( 𝑝 = 𝑃 → { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } ) |
13 |
12
|
supeq1d |
⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) |
14 |
13 2
|
eqtr4di |
⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = 𝑇 ) |
15 |
10 14
|
oveq12d |
⊢ ( 𝑝 = 𝑃 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( 𝑆 − 𝑇 ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
17 |
5 16
|
bi2anan9r |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
18 |
17
|
2rexbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
19 |
18
|
iotabidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
20 |
4 19
|
ifbieq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) = if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) ) |
21 |
|
df-pc |
⊢ pCnt = ( 𝑝 ∈ ℙ , 𝑟 ∈ ℚ ↦ if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) ) |
22 |
|
pnfex |
⊢ +∞ ∈ V |
23 |
|
iotaex |
⊢ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∈ V |
24 |
22 23
|
ifex |
⊢ if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) ∈ V |
25 |
20 21 24
|
ovmpoa |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 𝑁 ) = if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) ) |
26 |
|
ifnefalse |
⊢ ( 𝑁 ≠ 0 → if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
27 |
25 26
|
sylan9eq |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 pCnt 𝑁 ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
28 |
27
|
anasss |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |