Step |
Hyp |
Ref |
Expression |
1 |
|
pc0 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
3 |
1 2
|
eqeltrdi |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
4 |
3
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
5 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ↔ ( 𝑃 pCnt 0 ) ∈ ℝ* ) ) |
7 |
4 6
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) ) |
8 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
9 |
8
|
zred |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ ) |
10 |
9
|
rexrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) |
11 |
10
|
expr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) ) |
12 |
7 11
|
pm2.61dne |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) |