| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pc0 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
| 2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 3 |
1 2
|
eqeltrdi |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
| 5 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ↔ ( 𝑃 pCnt 0 ) ∈ ℝ* ) ) |
| 7 |
4 6
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) ) |
| 8 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
| 9 |
8
|
zred |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) |
| 11 |
10
|
expr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) ) |
| 12 |
7 11
|
pm2.61dne |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) |