| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pc0 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  0 )  =  +∞ ) | 
						
							| 2 |  | pnf0xnn0 | ⊢ +∞  ∈  ℕ0* | 
						
							| 3 | 1 2 | eqeltrdi | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  0 )  ∈  ℕ0* ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  pCnt  0 )  ∈  ℕ0* ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑃  pCnt  𝑁 )  =  ( 𝑃  pCnt  0 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑁  =  0  →  ( ( 𝑃  pCnt  𝑁 )  ∈  ℕ0*  ↔  ( 𝑃  pCnt  0 )  ∈  ℕ0* ) ) | 
						
							| 7 | 4 6 | syl5ibrcom | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  =  0  →  ( 𝑃  pCnt  𝑁 )  ∈  ℕ0* ) ) | 
						
							| 8 |  | pczcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑃  pCnt  𝑁 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0xnn0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑃  pCnt  𝑁 )  ∈  ℕ0* ) | 
						
							| 10 | 9 | expr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ≠  0  →  ( 𝑃  pCnt  𝑁 )  ∈  ℕ0* ) ) | 
						
							| 11 | 7 10 | pm2.61dne | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  pCnt  𝑁 )  ∈  ℕ0* ) |