Step |
Hyp |
Ref |
Expression |
1 |
|
pc0 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
2 |
|
pnf0xnn0 |
⊢ +∞ ∈ ℕ0* |
3 |
1 2
|
eqeltrdi |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ∈ ℕ0* ) |
4 |
3
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt 0 ) ∈ ℕ0* ) |
5 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ↔ ( 𝑃 pCnt 0 ) ∈ ℕ0* ) ) |
7 |
4 6
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) ) |
8 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
9 |
8
|
nn0xnn0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) |
10 |
9
|
expr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) ) |
11 |
7 10
|
pm2.61dne |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0* ) |