Step |
Hyp |
Ref |
Expression |
1 |
|
pcge0 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 0 ≤ ( 𝑝 pCnt 𝐴 ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( 𝑝 pCnt 𝐴 ) ) |
3 |
2
|
ralrimiva |
⊢ ( 𝐴 ∈ ℤ → ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) |
4 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
5 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
6 |
|
dvds0 |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∥ 0 ) |
7 |
5 6
|
syl |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∥ 0 ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → 𝑦 ∥ 0 ) |
9 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
10 |
8 9
|
breqtrrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → 𝑦 ∥ 𝑥 ) |
11 |
10
|
a1d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → 𝑦 ∥ 𝑥 ) ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
13 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑥 ∈ ℤ ) |
14 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑥 ≠ 0 ) |
15 |
|
simpllr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑦 ∈ ℕ ) |
16 |
|
pcdiv |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ) |
17 |
12 13 14 15 16
|
syl121anc |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ) |
18 |
17
|
breq2d |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ 0 ≤ ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ) ) |
19 |
|
pczcl |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑝 pCnt 𝑥 ) ∈ ℕ0 ) |
20 |
12 13 14 19
|
syl12anc |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑥 ) ∈ ℕ0 ) |
21 |
20
|
nn0red |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑥 ) ∈ ℝ ) |
22 |
12 15
|
pccld |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑦 ) ∈ ℕ0 ) |
23 |
22
|
nn0red |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑦 ) ∈ ℝ ) |
24 |
21 23
|
subge0d |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ↔ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
25 |
18 24
|
bitrd |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
26 |
25
|
ralbidva |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
27 |
|
id |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℤ ) |
28 |
|
pc2dvds |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ∥ 𝑥 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
29 |
5 27 28
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ∥ 𝑥 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( 𝑦 ∥ 𝑥 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
31 |
26 30
|
bitr4d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ 𝑦 ∥ 𝑥 ) ) |
32 |
31
|
biimpd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → 𝑦 ∥ 𝑥 ) ) |
33 |
11 32
|
pm2.61dane |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → 𝑦 ∥ 𝑥 ) ) |
34 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
35 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → 𝑥 ∈ ℤ ) |
36 |
|
dvdsval2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ∥ 𝑥 ↔ ( 𝑥 / 𝑦 ) ∈ ℤ ) ) |
37 |
5 34 35 36
|
syl2an23an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ∥ 𝑥 ↔ ( 𝑥 / 𝑦 ) ∈ ℤ ) ) |
38 |
33 37
|
sylibd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → ( 𝑥 / 𝑦 ) ∈ ℤ ) ) |
39 |
|
oveq2 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ) |
40 |
39
|
breq2d |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 0 ≤ ( 𝑝 pCnt 𝐴 ) ↔ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ) ) |
41 |
40
|
ralbidv |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ) ) |
42 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℤ ↔ ( 𝑥 / 𝑦 ) ∈ ℤ ) ) |
43 |
41 42
|
imbi12d |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ↔ ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → ( 𝑥 / 𝑦 ) ∈ ℤ ) ) ) |
44 |
38 43
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
45 |
44
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ) |
46 |
4 45
|
sylbi |
⊢ ( 𝐴 ∈ ℚ → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ) |
47 |
3 46
|
impbid2 |
⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ∈ ℤ ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) ) |