Metamath Proof Explorer


Theorem pczcl

Description: Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pczcl ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 eqid sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < ) = sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < )
2 1 pczpre ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < ) )
3 prmuz2 ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ ‘ 2 ) )
4 eqid { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } = { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 }
5 4 1 pcprecl ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < ) ∈ ℕ0 ∧ ( 𝑃 ↑ sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < ) ) ∥ 𝑁 ) )
6 3 5 sylan ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < ) ∈ ℕ0 ∧ ( 𝑃 ↑ sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < ) ) ∥ 𝑁 ) )
7 6 simpld ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃𝑥 ) ∥ 𝑁 } , ℝ , < ) ∈ ℕ0 )
8 2 7 eqeltrd ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 )