Metamath Proof Explorer


Theorem pczdvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion pczdvds ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 )

Proof

Step Hyp Ref Expression
1 eqid sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < )
2 1 pczpre ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < ) )
3 2 oveq2d ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) = ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < ) ) )
4 prmuz2 ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ ‘ 2 ) )
5 eqid { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 }
6 5 1 pcprecl ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < ) ∈ ℕ0 ∧ ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ∥ 𝑁 ) )
7 6 simprd ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ∥ 𝑁 )
8 4 7 sylan ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ∥ 𝑁 )
9 3 8 eqbrtrd ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 )