| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 2 |  | eqid | ⊢ { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } | 
						
							| 3 |  | eqid | ⊢ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  ) | 
						
							| 4 | 2 3 | pcprendvds2 | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ¬  𝑃  ∥  ( 𝑁  /  ( 𝑃 ↑ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 5 | 1 4 | sylan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ¬  𝑃  ∥  ( 𝑁  /  ( 𝑃 ↑ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 6 | 3 | pczpre | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑃  pCnt  𝑁 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑁 ) )  =  ( 𝑃 ↑ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  ) ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑁  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑁 ) ) )  =  ( 𝑁  /  ( 𝑃 ↑ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  ) ) ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑃  ∥  ( 𝑁  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑁 ) ) )  ↔  𝑃  ∥  ( 𝑁  /  ( 𝑃 ↑ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  𝑁 } ,  ℝ ,   <  ) ) ) ) ) | 
						
							| 10 | 5 9 | mtbird | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ¬  𝑃  ∥  ( 𝑁  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑁 ) ) ) ) |