Metamath Proof Explorer


Theorem peano2cn

Description: A theorem for complex numbers analogous the second Peano postulate peano2nn . (Contributed by NM, 17-Aug-2005)

Ref Expression
Assertion peano2cn ( 𝐴 ∈ ℂ → ( 𝐴 + 1 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 addcl ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) ∈ ℂ )
3 1 2 mpan2 ( 𝐴 ∈ ℂ → ( 𝐴 + 1 ) ∈ ℂ )