Description: A theorem for complex numbers analogous the second Peano postulate peano2nn . (Contributed by NM, 17-Aug-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | peano2cn | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 1 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn | ⊢ 1 ∈ ℂ | |
2 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) ∈ ℂ ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 1 ) ∈ ℂ ) |