| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω |
| 2 |
|
fvelrnb |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω → ( 𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 ) |
| 4 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ V |
| 5 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 6 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 + 1 ) = ( 𝑥 + 1 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑧 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) → ( 𝑧 + 1 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ) |
| 8 |
5 6 7
|
frsucmpt2 |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ) |
| 9 |
4 8
|
mpan2 |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ) |
| 10 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 11 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω ∧ suc 𝑦 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ) |
| 12 |
1 10 11
|
sylancr |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ) |
| 13 |
|
df-nn |
⊢ ℕ = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) |
| 14 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 15 |
13 14
|
eqtri |
⊢ ℕ = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 16 |
12 15
|
eleqtrrdi |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ℕ ) |
| 17 |
9 16
|
eqeltrrd |
⊢ ( 𝑦 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
| 18 |
|
oveq1 |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) = ( 𝐴 + 1 ) ) |
| 19 |
18
|
eleq1d |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ ℕ ↔ ( 𝐴 + 1 ) ∈ ℕ ) ) |
| 20 |
17 19
|
syl5ibcom |
⊢ ( 𝑦 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( 𝐴 + 1 ) ∈ ℕ ) ) |
| 21 |
20
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( 𝐴 + 1 ) ∈ ℕ ) |
| 22 |
3 21
|
sylbi |
⊢ ( 𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) → ( 𝐴 + 1 ) ∈ ℕ ) |
| 23 |
22 15
|
eleq2s |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) |