Metamath Proof Explorer


Theorem peano2re

Description: A theorem for reals analogous the second Peano postulate peano2nn . (Contributed by NM, 5-Jul-2005)

Ref Expression
Assertion peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 readdcl ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℝ )
3 1 2 mpan2 ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )