Metamath Proof Explorer


Theorem peano2rem

Description: "Reverse" second Peano postulate analogue for reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion peano2rem ( 𝑁 ∈ ℝ → ( 𝑁 − 1 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 resubcl ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑁 − 1 ) ∈ ℝ )
3 1 2 mpan2 ( 𝑁 ∈ ℝ → ( 𝑁 − 1 ) ∈ ℝ )