Description: Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | peano2uzs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | peano2uzs | ⊢ ( 𝑁 ∈ 𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uzs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | 2 1 | eleqtrrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ 𝑍 ) |
| 4 | 3 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 ) |