Metamath Proof Explorer


Theorem peano2z

Description: Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005)

Ref Expression
Assertion peano2z ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 zaddcl ( ( 𝑁 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑁 + 1 ) ∈ ℤ )
3 1 2 mpan2 ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ )