Metamath Proof Explorer


Theorem peano2zm

Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005)

Ref Expression
Assertion peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 zsubcl ( ( 𝑁 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑁 − 1 ) ∈ ℤ )
3 1 2 mpan2 ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )