| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifn | ⊢ ( 𝑧  ∈  ( ω  ∖  𝐴 )  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  ∧  𝑧  ∈  ( ω  ∖  𝐴 ) )  →  ¬  𝑧  ∈  𝐴 ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑧  ∈  ( ω  ∖  𝐴 )  →  𝑧  ∈  ω ) | 
						
							| 4 |  | elndif | ⊢ ( ∅  ∈  𝐴  →  ¬  ∅  ∈  ( ω  ∖  𝐴 ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑧  =  ∅  →  ( 𝑧  ∈  ( ω  ∖  𝐴 )  ↔  ∅  ∈  ( ω  ∖  𝐴 ) ) ) | 
						
							| 6 | 5 | biimpcd | ⊢ ( 𝑧  ∈  ( ω  ∖  𝐴 )  →  ( 𝑧  =  ∅  →  ∅  ∈  ( ω  ∖  𝐴 ) ) ) | 
						
							| 7 | 6 | necon3bd | ⊢ ( 𝑧  ∈  ( ω  ∖  𝐴 )  →  ( ¬  ∅  ∈  ( ω  ∖  𝐴 )  →  𝑧  ≠  ∅ ) ) | 
						
							| 8 | 4 7 | mpan9 | ⊢ ( ( ∅  ∈  𝐴  ∧  𝑧  ∈  ( ω  ∖  𝐴 ) )  →  𝑧  ≠  ∅ ) | 
						
							| 9 |  | nnsuc | ⊢ ( ( 𝑧  ∈  ω  ∧  𝑧  ≠  ∅ )  →  ∃ 𝑦  ∈  ω 𝑧  =  suc  𝑦 ) | 
						
							| 10 | 3 8 9 | syl2an2 | ⊢ ( ( ∅  ∈  𝐴  ∧  𝑧  ∈  ( ω  ∖  𝐴 ) )  →  ∃ 𝑦  ∈  ω 𝑧  =  suc  𝑦 ) | 
						
							| 11 | 10 | ad4ant13 | ⊢ ( ( ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  ∧  𝑧  ∈  ( ω  ∖  𝐴 ) )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ )  →  ∃ 𝑦  ∈  ω 𝑧  =  suc  𝑦 ) | 
						
							| 12 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 13 |  | suceq | ⊢ ( 𝑥  =  𝑦  →  suc  𝑥  =  suc  𝑦 ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( suc  𝑥  ∈  𝐴  ↔  suc  𝑦  ∈  𝐴 ) ) | 
						
							| 15 | 12 14 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 )  ↔  ( 𝑦  ∈  𝐴  →  suc  𝑦  ∈  𝐴 ) ) ) | 
						
							| 16 | 15 | rspccv | ⊢ ( ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 )  →  ( 𝑦  ∈  ω  →  ( 𝑦  ∈  𝐴  →  suc  𝑦  ∈  𝐴 ) ) ) | 
						
							| 17 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 18 | 17 | sucid | ⊢ 𝑦  ∈  suc  𝑦 | 
						
							| 19 |  | eleq2 | ⊢ ( 𝑧  =  suc  𝑦  →  ( 𝑦  ∈  𝑧  ↔  𝑦  ∈  suc  𝑦 ) ) | 
						
							| 20 | 18 19 | mpbiri | ⊢ ( 𝑧  =  suc  𝑦  →  𝑦  ∈  𝑧 ) | 
						
							| 21 |  | eleq1 | ⊢ ( 𝑧  =  suc  𝑦  →  ( 𝑧  ∈  ω  ↔  suc  𝑦  ∈  ω ) ) | 
						
							| 22 |  | peano2b | ⊢ ( 𝑦  ∈  ω  ↔  suc  𝑦  ∈  ω ) | 
						
							| 23 | 21 22 | bitr4di | ⊢ ( 𝑧  =  suc  𝑦  →  ( 𝑧  ∈  ω  ↔  𝑦  ∈  ω ) ) | 
						
							| 24 |  | minel | ⊢ ( ( 𝑦  ∈  𝑧  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ )  →  ¬  𝑦  ∈  ( ω  ∖  𝐴 ) ) | 
						
							| 25 |  | neldif | ⊢ ( ( 𝑦  ∈  ω  ∧  ¬  𝑦  ∈  ( ω  ∖  𝐴 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( 𝑦  ∈  ω  ∧  ( 𝑦  ∈  𝑧  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 27 | 26 | exp32 | ⊢ ( 𝑦  ∈  ω  →  ( 𝑦  ∈  𝑧  →  ( ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅  →  𝑦  ∈  𝐴 ) ) ) | 
						
							| 28 | 23 27 | biimtrdi | ⊢ ( 𝑧  =  suc  𝑦  →  ( 𝑧  ∈  ω  →  ( 𝑦  ∈  𝑧  →  ( ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅  →  𝑦  ∈  𝐴 ) ) ) ) | 
						
							| 29 | 20 28 | mpid | ⊢ ( 𝑧  =  suc  𝑦  →  ( 𝑧  ∈  ω  →  ( ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅  →  𝑦  ∈  𝐴 ) ) ) | 
						
							| 30 | 3 29 | syl5 | ⊢ ( 𝑧  =  suc  𝑦  →  ( 𝑧  ∈  ( ω  ∖  𝐴 )  →  ( ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅  →  𝑦  ∈  𝐴 ) ) ) | 
						
							| 31 | 30 | impd | ⊢ ( 𝑧  =  suc  𝑦  →  ( ( 𝑧  ∈  ( ω  ∖  𝐴 )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ )  →  𝑦  ∈  𝐴 ) ) | 
						
							| 32 |  | eleq1a | ⊢ ( suc  𝑦  ∈  𝐴  →  ( 𝑧  =  suc  𝑦  →  𝑧  ∈  𝐴 ) ) | 
						
							| 33 | 32 | com12 | ⊢ ( 𝑧  =  suc  𝑦  →  ( suc  𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) | 
						
							| 34 | 31 33 | imim12d | ⊢ ( 𝑧  =  suc  𝑦  →  ( ( 𝑦  ∈  𝐴  →  suc  𝑦  ∈  𝐴 )  →  ( ( 𝑧  ∈  ( ω  ∖  𝐴 )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ )  →  𝑧  ∈  𝐴 ) ) ) | 
						
							| 35 | 34 | com13 | ⊢ ( ( 𝑧  ∈  ( ω  ∖  𝐴 )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ )  →  ( ( 𝑦  ∈  𝐴  →  suc  𝑦  ∈  𝐴 )  →  ( 𝑧  =  suc  𝑦  →  𝑧  ∈  𝐴 ) ) ) | 
						
							| 36 | 16 35 | sylan9 | ⊢ ( ( ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 )  ∧  ( 𝑧  ∈  ( ω  ∖  𝐴 )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ ) )  →  ( 𝑦  ∈  ω  →  ( 𝑧  =  suc  𝑦  →  𝑧  ∈  𝐴 ) ) ) | 
						
							| 37 | 36 | rexlimdv | ⊢ ( ( ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 )  ∧  ( 𝑧  ∈  ( ω  ∖  𝐴 )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ ) )  →  ( ∃ 𝑦  ∈  ω 𝑧  =  suc  𝑦  →  𝑧  ∈  𝐴 ) ) | 
						
							| 38 | 37 | exp32 | ⊢ ( ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 )  →  ( 𝑧  ∈  ( ω  ∖  𝐴 )  →  ( ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅  →  ( ∃ 𝑦  ∈  ω 𝑧  =  suc  𝑦  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 39 | 38 | a1i | ⊢ ( ∅  ∈  𝐴  →  ( ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 )  →  ( 𝑧  ∈  ( ω  ∖  𝐴 )  →  ( ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅  →  ( ∃ 𝑦  ∈  ω 𝑧  =  suc  𝑦  →  𝑧  ∈  𝐴 ) ) ) ) ) | 
						
							| 40 | 39 | imp41 | ⊢ ( ( ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  ∧  𝑧  ∈  ( ω  ∖  𝐴 ) )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ )  →  ( ∃ 𝑦  ∈  ω 𝑧  =  suc  𝑦  →  𝑧  ∈  𝐴 ) ) | 
						
							| 41 | 11 40 | mpd | ⊢ ( ( ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  ∧  𝑧  ∈  ( ω  ∖  𝐴 ) )  ∧  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ )  →  𝑧  ∈  𝐴 ) | 
						
							| 42 | 2 41 | mtand | ⊢ ( ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  ∧  𝑧  ∈  ( ω  ∖  𝐴 ) )  →  ¬  ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ ) | 
						
							| 43 | 42 | nrexdv | ⊢ ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  →  ¬  ∃ 𝑧  ∈  ( ω  ∖  𝐴 ) ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ ) | 
						
							| 44 |  | ordom | ⊢ Ord  ω | 
						
							| 45 |  | difss | ⊢ ( ω  ∖  𝐴 )  ⊆  ω | 
						
							| 46 |  | tz7.5 | ⊢ ( ( Ord  ω  ∧  ( ω  ∖  𝐴 )  ⊆  ω  ∧  ( ω  ∖  𝐴 )  ≠  ∅ )  →  ∃ 𝑧  ∈  ( ω  ∖  𝐴 ) ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ ) | 
						
							| 47 | 44 45 46 | mp3an12 | ⊢ ( ( ω  ∖  𝐴 )  ≠  ∅  →  ∃ 𝑧  ∈  ( ω  ∖  𝐴 ) ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅ ) | 
						
							| 48 | 47 | necon1bi | ⊢ ( ¬  ∃ 𝑧  ∈  ( ω  ∖  𝐴 ) ( ( ω  ∖  𝐴 )  ∩  𝑧 )  =  ∅  →  ( ω  ∖  𝐴 )  =  ∅ ) | 
						
							| 49 | 43 48 | syl | ⊢ ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  →  ( ω  ∖  𝐴 )  =  ∅ ) | 
						
							| 50 |  | ssdif0 | ⊢ ( ω  ⊆  𝐴  ↔  ( ω  ∖  𝐴 )  =  ∅ ) | 
						
							| 51 | 49 50 | sylibr | ⊢ ( ( ∅  ∈  𝐴  ∧  ∀ 𝑥  ∈  ω ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) )  →  ω  ⊆  𝐴 ) |