Step |
Hyp |
Ref |
Expression |
1 |
|
eldifn |
⊢ ( 𝑧 ∈ ( ω ∖ 𝐴 ) → ¬ 𝑧 ∈ 𝐴 ) |
2 |
1
|
adantl |
⊢ ( ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ω ∖ 𝐴 ) ) → ¬ 𝑧 ∈ 𝐴 ) |
3 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ω ∖ 𝐴 ) → 𝑧 ∈ ω ) |
4 |
|
elndif |
⊢ ( ∅ ∈ 𝐴 → ¬ ∅ ∈ ( ω ∖ 𝐴 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑧 = ∅ → ( 𝑧 ∈ ( ω ∖ 𝐴 ) ↔ ∅ ∈ ( ω ∖ 𝐴 ) ) ) |
6 |
5
|
biimpcd |
⊢ ( 𝑧 ∈ ( ω ∖ 𝐴 ) → ( 𝑧 = ∅ → ∅ ∈ ( ω ∖ 𝐴 ) ) ) |
7 |
6
|
necon3bd |
⊢ ( 𝑧 ∈ ( ω ∖ 𝐴 ) → ( ¬ ∅ ∈ ( ω ∖ 𝐴 ) → 𝑧 ≠ ∅ ) ) |
8 |
4 7
|
mpan9 |
⊢ ( ( ∅ ∈ 𝐴 ∧ 𝑧 ∈ ( ω ∖ 𝐴 ) ) → 𝑧 ≠ ∅ ) |
9 |
|
nnsuc |
⊢ ( ( 𝑧 ∈ ω ∧ 𝑧 ≠ ∅ ) → ∃ 𝑦 ∈ ω 𝑧 = suc 𝑦 ) |
10 |
3 8 9
|
syl2an2 |
⊢ ( ( ∅ ∈ 𝐴 ∧ 𝑧 ∈ ( ω ∖ 𝐴 ) ) → ∃ 𝑦 ∈ ω 𝑧 = suc 𝑦 ) |
11 |
10
|
ad4ant13 |
⊢ ( ( ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ω ∖ 𝐴 ) ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) → ∃ 𝑦 ∈ ω 𝑧 = suc 𝑦 ) |
12 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
13 |
|
suceq |
⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) |
14 |
13
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( suc 𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴 ) ) ) |
16 |
15
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ω → ( 𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴 ) ) ) |
17 |
|
vex |
⊢ 𝑦 ∈ V |
18 |
17
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
19 |
|
eleq2 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦 ) ) |
20 |
18 19
|
mpbiri |
⊢ ( 𝑧 = suc 𝑦 → 𝑦 ∈ 𝑧 ) |
21 |
|
eleq1 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ∈ ω ↔ suc 𝑦 ∈ ω ) ) |
22 |
|
peano2b |
⊢ ( 𝑦 ∈ ω ↔ suc 𝑦 ∈ ω ) |
23 |
21 22
|
bitr4di |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ∈ ω ↔ 𝑦 ∈ ω ) ) |
24 |
|
minel |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) → ¬ 𝑦 ∈ ( ω ∖ 𝐴 ) ) |
25 |
|
neldif |
⊢ ( ( 𝑦 ∈ ω ∧ ¬ 𝑦 ∈ ( ω ∖ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
26 |
24 25
|
sylan2 |
⊢ ( ( 𝑦 ∈ ω ∧ ( 𝑦 ∈ 𝑧 ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) ) → 𝑦 ∈ 𝐴 ) |
27 |
26
|
exp32 |
⊢ ( 𝑦 ∈ ω → ( 𝑦 ∈ 𝑧 → ( ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ → 𝑦 ∈ 𝐴 ) ) ) |
28 |
23 27
|
syl6bi |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ∈ ω → ( 𝑦 ∈ 𝑧 → ( ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ → 𝑦 ∈ 𝐴 ) ) ) ) |
29 |
20 28
|
mpid |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ∈ ω → ( ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ → 𝑦 ∈ 𝐴 ) ) ) |
30 |
3 29
|
syl5 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ∈ ( ω ∖ 𝐴 ) → ( ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ → 𝑦 ∈ 𝐴 ) ) ) |
31 |
30
|
impd |
⊢ ( 𝑧 = suc 𝑦 → ( ( 𝑧 ∈ ( ω ∖ 𝐴 ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) → 𝑦 ∈ 𝐴 ) ) |
32 |
|
eleq1a |
⊢ ( suc 𝑦 ∈ 𝐴 → ( 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴 ) ) |
33 |
32
|
com12 |
⊢ ( 𝑧 = suc 𝑦 → ( suc 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) |
34 |
31 33
|
imim12d |
⊢ ( 𝑧 = suc 𝑦 → ( ( 𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴 ) → ( ( 𝑧 ∈ ( ω ∖ 𝐴 ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) → 𝑧 ∈ 𝐴 ) ) ) |
35 |
34
|
com13 |
⊢ ( ( 𝑧 ∈ ( ω ∖ 𝐴 ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) → ( ( 𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴 ) → ( 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴 ) ) ) |
36 |
16 35
|
sylan9 |
⊢ ( ( ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( ω ∖ 𝐴 ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) ) → ( 𝑦 ∈ ω → ( 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴 ) ) ) |
37 |
36
|
rexlimdv |
⊢ ( ( ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ( ω ∖ 𝐴 ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) ) → ( ∃ 𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴 ) ) |
38 |
37
|
exp32 |
⊢ ( ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) → ( 𝑧 ∈ ( ω ∖ 𝐴 ) → ( ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ → ( ∃ 𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴 ) ) ) ) |
39 |
38
|
a1i |
⊢ ( ∅ ∈ 𝐴 → ( ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) → ( 𝑧 ∈ ( ω ∖ 𝐴 ) → ( ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ → ( ∃ 𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴 ) ) ) ) ) |
40 |
39
|
imp41 |
⊢ ( ( ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ω ∖ 𝐴 ) ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) → ( ∃ 𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴 ) ) |
41 |
11 40
|
mpd |
⊢ ( ( ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ω ∖ 𝐴 ) ) ∧ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) → 𝑧 ∈ 𝐴 ) |
42 |
2 41
|
mtand |
⊢ ( ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ω ∖ 𝐴 ) ) → ¬ ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) |
43 |
42
|
nrexdv |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ¬ ∃ 𝑧 ∈ ( ω ∖ 𝐴 ) ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) |
44 |
|
ordom |
⊢ Ord ω |
45 |
|
difss |
⊢ ( ω ∖ 𝐴 ) ⊆ ω |
46 |
|
tz7.5 |
⊢ ( ( Ord ω ∧ ( ω ∖ 𝐴 ) ⊆ ω ∧ ( ω ∖ 𝐴 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( ω ∖ 𝐴 ) ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) |
47 |
44 45 46
|
mp3an12 |
⊢ ( ( ω ∖ 𝐴 ) ≠ ∅ → ∃ 𝑧 ∈ ( ω ∖ 𝐴 ) ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ ) |
48 |
47
|
necon1bi |
⊢ ( ¬ ∃ 𝑧 ∈ ( ω ∖ 𝐴 ) ( ( ω ∖ 𝐴 ) ∩ 𝑧 ) = ∅ → ( ω ∖ 𝐴 ) = ∅ ) |
49 |
43 48
|
syl |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ( ω ∖ 𝐴 ) = ∅ ) |
50 |
|
ssdif0 |
⊢ ( ω ⊆ 𝐴 ↔ ( ω ∖ 𝐴 ) = ∅ ) |
51 |
49 50
|
sylibr |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ω ⊆ 𝐴 ) |