| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nn |
⊢ ℕ = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) “ ω ) |
| 2 |
|
df-ima |
⊢ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) “ ω ) = ran ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) |
| 3 |
1 2
|
eqtri |
⊢ ℕ = ran ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) |
| 4 |
|
frfnom |
⊢ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) Fn ω |
| 5 |
4
|
a1i |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) Fn ω ) |
| 6 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑦 = ∅ → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) ∈ 𝐴 ↔ ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ 𝐴 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) ∈ 𝐴 ↔ ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐴 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑧 → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑦 = suc 𝑧 → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) ∈ 𝐴 ↔ ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) ∈ 𝐴 ) ) |
| 12 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 13 |
|
fr0g |
⊢ ( 1 ∈ ℂ → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 |
| 15 |
|
simpl |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → 1 ∈ 𝐴 ) |
| 16 |
14 15
|
eqeltrid |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ 𝐴 ) |
| 17 |
|
oveq1 |
⊢ ( 𝑥 = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) → ( 𝑥 + 1 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑥 = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) → ( ( 𝑥 + 1 ) ∈ 𝐴 ↔ ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ∈ 𝐴 ) ) |
| 19 |
18
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐴 → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ∈ 𝐴 ) ) |
| 20 |
19
|
ad2antlr |
⊢ ( ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐴 → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ∈ 𝐴 ) ) |
| 21 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ∈ V |
| 22 |
|
eqid |
⊢ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) |
| 23 |
|
oveq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 + 1 ) = ( 𝑛 + 1 ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑦 = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) → ( 𝑦 + 1 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ) |
| 25 |
22 23 24
|
frsucmpt2 |
⊢ ( ( 𝑧 ∈ ω ∧ ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ∈ V ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ) |
| 26 |
21 25
|
mpan2 |
⊢ ( 𝑧 ∈ ω → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑧 ∈ ω → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) ∈ 𝐴 ↔ ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ∈ 𝐴 ) ) |
| 28 |
27
|
adantl |
⊢ ( ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) ∈ 𝐴 ↔ ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) + 1 ) ∈ 𝐴 ) ) |
| 29 |
20 28
|
sylibrd |
⊢ ( ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐴 → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) ∈ 𝐴 ) ) |
| 30 |
29
|
expcom |
⊢ ( 𝑧 ∈ ω → ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐴 → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑧 ) ∈ 𝐴 ) ) ) |
| 31 |
7 9 11 16 30
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 32 |
31
|
com12 |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ( 𝑦 ∈ ω → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 33 |
32
|
ralrimiv |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ∀ 𝑦 ∈ ω ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 34 |
|
ffnfv |
⊢ ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) : ω ⟶ 𝐴 ↔ ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) Fn ω ∧ ∀ 𝑦 ∈ ω ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 35 |
5 33 34
|
sylanbrc |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) : ω ⟶ 𝐴 ) |
| 36 |
35
|
frnd |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ran ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ⊆ 𝐴 ) |
| 37 |
3 36
|
eqsstrid |
⊢ ( ( 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → ℕ ⊆ 𝐴 ) |