| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1234qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 2 |  | simprl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 3 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 4 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  →  𝐷  ∈  ℕ ) | 
						
							| 6 | 5 | nncnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  →  𝐷  ∈  ℂ ) | 
						
							| 7 | 6 | ad3antrrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  𝐷  ∈  ℂ ) | 
						
							| 8 | 7 | sqrtcld | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 9 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 10 | 9 | ad2antll | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  𝑏  ∈  ℂ ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  𝑏  ∈  ℂ ) | 
						
							| 12 | 8 11 | sqmuld | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 )  =  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 13 | 7 | sqsqrtd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( √ ‘ 𝐷 ) ↑ 2 )  =  𝐷 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 15 | 12 14 | eqtr2d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  =  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) ) | 
						
							| 17 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 18 | 17 | ad2antrl | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  𝑎  ∈  ℂ ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  𝑎  ∈  ℂ ) | 
						
							| 20 | 8 11 | mulcld | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ ) | 
						
							| 21 |  | subsq | ⊢ ( ( 𝑎  ∈  ℂ  ∧  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 23 | 16 22 | eqtrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  =  ( 0  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 27 | 19 20 | subcld | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∈  ℂ ) | 
						
							| 28 | 27 | mul02d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( 0  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  =  0 ) | 
						
							| 29 | 26 28 | eqtrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  =  0 ) | 
						
							| 30 | 23 24 29 | 3eqtr3d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ∧  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0 )  →  1  =  0 ) | 
						
							| 31 | 30 | ex | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  0  →  1  =  0 ) ) | 
						
							| 32 | 31 | necon3d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 1  ≠  0  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ≠  0 ) ) | 
						
							| 33 | 3 32 | mpi | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ≠  0 ) | 
						
							| 34 | 33 | adantrl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ≠  0 ) | 
						
							| 35 | 2 34 | eqnetrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ≠  0 ) | 
						
							| 36 | 35 | ex | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐴  ≠  0 ) ) | 
						
							| 37 | 36 | rexlimdvva | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐴  ≠  0 ) ) | 
						
							| 38 | 37 | expimpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ≠  0 ) ) | 
						
							| 39 | 1 38 | sylbid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  →  𝐴  ≠  0 ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐴  ≠  0 ) |