Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1234qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
2 |
|
simprl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
3 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
4 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) → 𝐷 ∈ ℕ ) |
6 |
5
|
nncnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) → 𝐷 ∈ ℂ ) |
7 |
6
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → 𝐷 ∈ ℂ ) |
8 |
7
|
sqrtcld |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
9 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
10 |
9
|
ad2antll |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℂ ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → 𝑏 ∈ ℂ ) |
12 |
8 11
|
sqmuld |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) ) |
13 |
7
|
sqsqrtd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 ) |
14 |
13
|
oveq1d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) |
15 |
12 14
|
eqtr2d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) = ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) |
16 |
15
|
oveq2d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) ) |
17 |
|
zcn |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) |
18 |
17
|
ad2antrl |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℂ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → 𝑎 ∈ ℂ ) |
20 |
8 11
|
mulcld |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) |
21 |
|
subsq |
⊢ ( ( 𝑎 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
23 |
16 22
|
eqtrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
24 |
|
simplr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) |
25 |
|
simpr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) |
26 |
25
|
oveq1d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) = ( 0 · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
27 |
19 20
|
subcld |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∈ ℂ ) |
28 |
27
|
mul02d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( 0 · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) = 0 ) |
29 |
26 28
|
eqtrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) = 0 ) |
30 |
23 24 29
|
3eqtr3d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ∧ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 ) → 1 = 0 ) |
31 |
30
|
ex |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = 0 → 1 = 0 ) ) |
32 |
31
|
necon3d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 1 ≠ 0 → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ≠ 0 ) ) |
33 |
3 32
|
mpi |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ≠ 0 ) |
34 |
33
|
adantrl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ≠ 0 ) |
35 |
2 34
|
eqnetrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 ≠ 0 ) |
36 |
35
|
ex |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐴 ≠ 0 ) ) |
37 |
36
|
rexlimdvva |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐴 ≠ 0 ) ) |
38 |
37
|
expimpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 ≠ 0 ) ) |
39 |
1 38
|
sylbid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) → 𝐴 ≠ 0 ) ) |
40 |
39
|
imp |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → 𝐴 ≠ 0 ) |