| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1234qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 2 | 1 | biimpa | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 3 |  | pell1234qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | pell1234qrne0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐴  ≠  0 ) | 
						
							| 5 | 3 4 | rereccld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 7 |  | simplrl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 8 |  | simplrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝑏  ∈  ℤ ) | 
						
							| 9 | 8 | znegcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝑏  ∈  ℤ ) | 
						
							| 10 | 5 | recnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 12 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  𝑎  ∈  ℂ ) | 
						
							| 14 | 13 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝑎  ∈  ℂ ) | 
						
							| 15 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 16 | 15 | nncnd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℂ ) | 
						
							| 17 | 16 | ad3antrrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 18 | 17 | sqrtcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 19 | 8 | zcnd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝑏  ∈  ℂ ) | 
						
							| 20 | 19 | negcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝑏  ∈  ℂ ) | 
						
							| 21 | 18 20 | mulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 )  ·  - 𝑏 )  ∈  ℂ ) | 
						
							| 22 | 14 21 | addcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∈  ℂ ) | 
						
							| 23 | 3 | recnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 25 | 4 | ad2antrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ≠  0 ) | 
						
							| 26 | 18 19 | sqmuld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 )  =  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 27 | 17 | sqsqrtd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 ) ↑ 2 )  =  𝐷 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 29 | 26 28 | eqtr2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  =  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) ) | 
						
							| 31 |  | simprr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 32 | 18 19 | mulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ ) | 
						
							| 33 |  | subsq | ⊢ ( ( 𝑎  ∈  ℂ  ∧  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 34 | 14 32 33 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 35 | 30 31 34 | 3eqtr3d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  1  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 36 | 24 25 | recidd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ·  ( 1  /  𝐴 ) )  =  1 ) | 
						
							| 37 |  | simprl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 38 | 18 19 | mulneg2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 )  ·  - 𝑏 )  =  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  =  ( 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 40 | 14 32 | negsubd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 41 | 39 40 | eqtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  =  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 42 | 37 41 | oveq12d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ·  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 43 | 35 36 42 | 3eqtr4d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ·  ( 1  /  𝐴 ) )  =  ( 𝐴  ·  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) ) | 
						
							| 44 | 11 22 24 25 43 | mulcanad | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 45 |  | sqneg | ⊢ ( 𝑏  ∈  ℂ  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 46 | 19 45 | syl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 49 | 48 31 | eqtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 50 |  | oveq1 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) | 
						
							| 51 | 50 | eqeq2d | ⊢ ( 𝑐  =  𝑎  →  ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ↔  ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) ) | 
						
							| 52 |  | oveq1 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑐 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( 𝑐  =  𝑎  →  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) ) ) | 
						
							| 54 | 53 | eqeq1d | ⊢ ( 𝑐  =  𝑎  →  ( ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1  ↔  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 55 | 51 54 | anbi12d | ⊢ ( 𝑐  =  𝑎  →  ( ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  ↔  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 56 |  | oveq2 | ⊢ ( 𝑑  =  - 𝑏  →  ( ( √ ‘ 𝐷 )  ·  𝑑 )  =  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 58 | 57 | eqeq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ↔  ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝑑  =  - 𝑏  →  ( 𝑑 ↑ 2 )  =  ( - 𝑏 ↑ 2 ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( 𝐷  ·  ( 𝑑 ↑ 2 ) )  =  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) ) ) | 
						
							| 62 | 61 | eqeq1d | ⊢ ( 𝑑  =  - 𝑏  →  ( ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1  ↔  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 63 | 58 62 | anbi12d | ⊢ ( 𝑑  =  - 𝑏  →  ( ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  ↔  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 64 | 55 63 | rspc2ev | ⊢ ( ( 𝑎  ∈  ℤ  ∧  - 𝑏  ∈  ℤ  ∧  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 65 | 7 9 44 49 64 | syl112anc | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 66 | 6 65 | jca | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 68 | 67 | rexlimdvva | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 69 | 68 | adantld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 70 | 2 69 | mpd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 71 |  | elpell1234qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℤ ∃ 𝑑  ∈  ℤ ( ( 1  /  𝐴 )  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 73 | 70 72 | mpbird | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 ) ) |