Step |
Hyp |
Ref |
Expression |
1 |
|
elpell14qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
2 |
1
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) |
3 |
|
simplrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝑏 ∈ ℤ ) |
4 |
|
elznn0 |
⊢ ( 𝑏 ∈ ℤ ↔ ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) ) |
5 |
3 4
|
sylib |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) ) |
6 |
5
|
simprd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) |
7 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → 𝐴 ∈ ℝ ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
9 |
|
simprl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℕ0 ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 ) |
11 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑏 ∈ ℕ0 ) |
12 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
13 |
|
rsp2e |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
15 |
8 14
|
jca |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) |
16 |
15
|
ex |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℕ0 → ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
17 |
|
elpell1qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
18 |
17
|
ad4antr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
19 |
16 18
|
sylibrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℕ0 → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
20 |
7
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
21 |
|
pell14qrne0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ≠ 0 ) |
22 |
21
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
23 |
20 22
|
rereccld |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
24 |
9
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 ) |
25 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → - 𝑏 ∈ ℕ0 ) |
26 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
28 |
27 21
|
reccld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐴 ) ∈ ℂ ) |
29 |
28
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 1 / 𝐴 ) ∈ ℂ ) |
30 |
|
nn0cn |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℂ ) |
31 |
30
|
ad2antrl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℂ ) |
32 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
33 |
32
|
nncnd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℂ ) |
34 |
33
|
ad3antrrr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → 𝐷 ∈ ℂ ) |
35 |
34
|
sqrtcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
36 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
37 |
36
|
ad2antll |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℂ ) |
38 |
37
|
negcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → - 𝑏 ∈ ℂ ) |
39 |
35 38
|
mulcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) · - 𝑏 ) ∈ ℂ ) |
40 |
31 39
|
addcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∈ ℂ ) |
41 |
40
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∈ ℂ ) |
42 |
27
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 ∈ ℂ ) |
43 |
21
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 ≠ 0 ) |
44 |
27 21
|
recidd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) |
45 |
44
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) |
46 |
|
simprr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) |
47 |
45 46
|
eqtr4d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) ) |
48 |
31
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → 𝑎 ∈ ℂ ) |
49 |
35 37
|
mulcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) |
50 |
49
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) |
51 |
|
subsq |
⊢ ( ( 𝑎 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
52 |
48 50 51
|
syl2anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
53 |
35 37
|
sqmuld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) ) |
54 |
34
|
sqsqrtd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 ) |
55 |
54
|
oveq1d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) |
56 |
53 55
|
eqtr2d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) = ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) |
57 |
56
|
oveq2d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) ) |
58 |
57
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) ) |
59 |
|
simpr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
60 |
35 37
|
mulneg2d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) · - 𝑏 ) = - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) |
61 |
60
|
oveq2d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) = ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
62 |
|
negsub |
⊢ ( ( 𝑎 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) → ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
63 |
62
|
eqcomd |
⊢ ( ( 𝑎 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) → ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
64 |
31 49 63
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
65 |
61 64
|
eqtr4d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) = ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) = ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
67 |
59 66
|
oveq12d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
68 |
52 58 67
|
3eqtr4d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) ) |
69 |
68
|
adantrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) ) |
70 |
47 69
|
eqtrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) ) |
71 |
29 41 42 43 70
|
mulcanad |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) |
72 |
71
|
adantr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) |
73 |
37
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝑏 ∈ ℂ ) |
74 |
|
sqneg |
⊢ ( 𝑏 ∈ ℂ → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
75 |
73 74
|
syl |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
76 |
75
|
oveq2d |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( 𝐷 · ( - 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) |
77 |
76
|
oveq2d |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) ) |
78 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) |
79 |
77 78
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) |
80 |
72 79
|
jca |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) ) |
81 |
|
oveq2 |
⊢ ( 𝑐 = - 𝑏 → ( ( √ ‘ 𝐷 ) · 𝑐 ) = ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) |
82 |
81
|
oveq2d |
⊢ ( 𝑐 = - 𝑏 → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) |
83 |
82
|
eqeq2d |
⊢ ( 𝑐 = - 𝑏 → ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ↔ ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) ) |
84 |
|
oveq1 |
⊢ ( 𝑐 = - 𝑏 → ( 𝑐 ↑ 2 ) = ( - 𝑏 ↑ 2 ) ) |
85 |
84
|
oveq2d |
⊢ ( 𝑐 = - 𝑏 → ( 𝐷 · ( 𝑐 ↑ 2 ) ) = ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) |
86 |
85
|
oveq2d |
⊢ ( 𝑐 = - 𝑏 → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) ) |
87 |
86
|
eqeq1d |
⊢ ( 𝑐 = - 𝑏 → ( ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ↔ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) ) |
88 |
83 87
|
anbi12d |
⊢ ( 𝑐 = - 𝑏 → ( ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ↔ ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) ) ) |
89 |
88
|
rspcev |
⊢ ( ( - 𝑏 ∈ ℕ0 ∧ ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) |
90 |
25 80 89
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) |
91 |
|
rspe |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) |
92 |
24 90 91
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) |
93 |
23 92
|
jca |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) |
94 |
93
|
ex |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( - 𝑏 ∈ ℕ0 → ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) ) |
95 |
|
elpell1qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) ) |
96 |
95
|
ad4antr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) ) |
97 |
94 96
|
sylibrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( - 𝑏 ∈ ℕ0 → ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
98 |
19 97
|
orim12d |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
99 |
6 98
|
mpd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
100 |
99
|
ex |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
101 |
100
|
rexlimdvva |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) → ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
102 |
101
|
expimpd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
103 |
2 102
|
mpd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) |