Step |
Hyp |
Ref |
Expression |
1 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
4 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ∈ ℂ ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ∈ ℂ ) |
7 |
|
pell14qrne0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ≠ 0 ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ≠ 0 ) |
9 |
3 6 8
|
divrecd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
10 |
|
pell14qrreccl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
12 |
|
pell14qrmulcl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
13 |
11 12
|
syld3an3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
14 |
9 13
|
eqeltrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |