| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | recnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 5 | 4 | recnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 6 | 5 | 3adant2 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | pell14qrne0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐵  ≠  0 ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐵  ≠  0 ) | 
						
							| 9 | 3 6 8 | divrecd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  /  𝐵 )  =  ( 𝐴  ·  ( 1  /  𝐵 ) ) ) | 
						
							| 10 |  | pell14qrreccl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  /  𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 11 | 10 | 3adant2 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  /  𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 12 |  | pell14qrmulcl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  ( 1  /  𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( 1  /  𝐵 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 13 | 11 12 | syld3an3 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( 1  /  𝐵 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 14 | 9 13 | eqeltrd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  /  𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) |