Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0 |
⊢ ( 𝐵 ∈ ℤ ↔ ( 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℕ0 ∨ - 𝐵 ∈ ℕ0 ) ) ) |
2 |
|
simplll |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ℕ0 ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
3 |
|
simpllr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
4 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℕ0 ) |
5 |
|
pell14qrexpclnn0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
7 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
10 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → - 𝐵 ∈ ℕ0 ) |
13 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
14 |
9 11 12 13
|
syl3anc |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
16 |
|
simpllr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
17 |
|
pell14qrexpclnn0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
18 |
15 16 12 17
|
syl3anc |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
19 |
|
pell14qrreccl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ↑ - 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
20 |
15 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
21 |
14 20
|
eqeltrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
22 |
6 21
|
jaodan |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐵 ∈ ℕ0 ∨ - 𝐵 ∈ ℕ0 ) ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
23 |
22
|
expl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℕ0 ∨ - 𝐵 ∈ ℕ0 ) ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
24 |
1 23
|
syl5bi |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐵 ∈ ℤ → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
25 |
24
|
3impia |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |