| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑎  =  0  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ 0 ) ) | 
						
							| 2 | 1 | eleq1d | ⊢ ( 𝑎  =  0  →  ( ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴 ↑ 0 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝑎  =  0  →  ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 ) )  ↔  ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 0 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ 𝑏 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 ) )  ↔  ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ ( 𝑏  +  1 ) ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴 ↑ ( 𝑏  +  1 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 ) )  ↔  ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑎  =  𝐵  →  ( 𝐴 ↑ 𝑎 )  =  ( 𝐴 ↑ 𝐵 ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑎  =  𝐵  →  ( ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑎  =  𝐵  →  ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝑎 )  ∈  ( Pell14QR ‘ 𝐷 ) )  ↔  ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 13 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 15 | 14 | exp0d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 16 |  | pell14qrne0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ≠  0 ) | 
						
							| 17 | 14 16 | dividd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  /  𝐴 )  =  1 ) | 
						
							| 18 | 15 17 | eqtr4d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 0 )  =  ( 𝐴  /  𝐴 ) ) | 
						
							| 19 |  | pell14qrdivcl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  /  𝐴 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 20 | 19 | 3anidm23 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  /  𝐴 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 21 | 18 20 | eqeltrd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 0 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 22 | 14 | 3ad2ant2 | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 23 |  | simp1 | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝑏  ∈  ℕ0 ) | 
						
							| 24 | 22 23 | expp1d | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  =  ( ( 𝐴 ↑ 𝑏 )  ·  𝐴 ) ) | 
						
							| 25 |  | simp2l | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐷  ∈  ( ℕ  ∖  ◻NN ) ) | 
						
							| 26 |  | simp3 | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 27 |  | simp2r | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 28 |  | pell14qrmulcl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 𝐴 ↑ 𝑏 )  ·  𝐴 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 29 | 25 26 27 28 | syl3anc | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 𝐴 ↑ 𝑏 )  ·  𝐴 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 30 | 24 29 | eqeltrd | ⊢ ( ( 𝑏  ∈  ℕ0  ∧  ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 31 | 30 | 3exp | ⊢ ( 𝑏  ∈  ℕ0  →  ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 32 | 31 | a2d | ⊢ ( 𝑏  ∈  ℕ0  →  ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝑏 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ ( 𝑏  +  1 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 33 | 3 6 9 12 21 32 | nn0ind | ⊢ ( 𝐵  ∈  ℕ0  →  ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 34 | 33 | expdcom | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  →  ( 𝐵  ∈  ℕ0  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 35 | 34 | 3imp | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) |