Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 0 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑎 = 0 → ( ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ↑ 0 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝑏 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ ( 𝑏 + 1 ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑎 = 𝐵 → ( 𝐴 ↑ 𝑎 ) = ( 𝐴 ↑ 𝐵 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑎 = 𝐵 → ( ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑎 = 𝐵 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) ) |
13 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
15 |
14
|
exp0d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) = 1 ) |
16 |
|
pell14qrne0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ≠ 0 ) |
17 |
14 16
|
dividd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐴 ) = 1 ) |
18 |
15 17
|
eqtr4d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) = ( 𝐴 / 𝐴 ) ) |
19 |
|
pell14qrdivcl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
20 |
19
|
3anidm23 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
21 |
18 20
|
eqeltrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
22 |
14
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
23 |
|
simp1 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑏 ∈ ℕ0 ) |
24 |
22 23
|
expp1d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) ) |
25 |
|
simp2l |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
26 |
|
simp3 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
27 |
|
simp2r |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
28 |
|
pell14qrmulcl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
29 |
25 26 27 28
|
syl3anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴 ↑ 𝑏 ) · 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
30 |
24 29
|
eqeltrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
31 |
30
|
3exp |
⊢ ( 𝑏 ∈ ℕ0 → ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) ) |
32 |
31
|
a2d |
⊢ ( 𝑏 ∈ ℕ0 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) ) |
33 |
3 6 9 12 21 32
|
nn0ind |
⊢ ( 𝐵 ∈ ℕ0 → ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
34 |
33
|
expdcom |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → ( 𝐵 ∈ ℕ0 → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) ) |
35 |
34
|
3imp |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |