Step |
Hyp |
Ref |
Expression |
1 |
|
elpell14qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
2 |
|
0cnd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ∈ ℂ ) |
3 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
4 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ℕ ) |
5 |
4
|
nnred |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ℝ ) |
6 |
4
|
nnnn0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ℕ0 ) |
7 |
6
|
nn0ge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ 𝐷 ) |
8 |
5 7
|
resqrtcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
9 |
|
zre |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℝ ) |
10 |
9
|
adantl |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℝ ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑏 ∈ ℝ ) |
12 |
8 11
|
remulcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) |
14 |
2 13
|
abssubd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( abs ‘ ( 0 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) = ( abs ‘ ( ( ( √ ‘ 𝐷 ) · 𝑏 ) − 0 ) ) ) |
15 |
13
|
subid1d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( ( √ ‘ 𝐷 ) · 𝑏 ) − 0 ) = ( ( √ ‘ 𝐷 ) · 𝑏 ) ) |
16 |
15
|
fveq2d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( abs ‘ ( ( ( √ ‘ 𝐷 ) · 𝑏 ) − 0 ) ) = ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
17 |
14 16
|
eqtrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( abs ‘ ( 0 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) = ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
18 |
|
absresq |
⊢ ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℝ → ( ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) |
19 |
12 18
|
syl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) |
20 |
5
|
recnd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ℂ ) |
21 |
20
|
sqrtcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
22 |
10
|
recnd |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑏 ∈ ℂ ) |
24 |
21 23
|
sqmuld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) ) |
25 |
20
|
sqsqrtd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 ) |
26 |
25
|
oveq1d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) |
27 |
19 24 26
|
3eqtrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↑ 2 ) = ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) |
28 |
|
0lt1 |
⊢ 0 < 1 |
29 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) |
30 |
28 29
|
breqtrrid |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 < ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) ) |
31 |
11
|
resqcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝑏 ↑ 2 ) ∈ ℝ ) |
32 |
5 31
|
remulcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) ∈ ℝ ) |
33 |
|
nn0re |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℝ ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑎 ∈ ℝ ) |
36 |
35
|
resqcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝑎 ↑ 2 ) ∈ ℝ ) |
37 |
32 36
|
posdifd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( 𝐷 · ( 𝑏 ↑ 2 ) ) < ( 𝑎 ↑ 2 ) ↔ 0 < ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) ) ) |
38 |
30 37
|
mpbird |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) < ( 𝑎 ↑ 2 ) ) |
39 |
27 38
|
eqbrtrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↑ 2 ) < ( 𝑎 ↑ 2 ) ) |
40 |
13
|
abscld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∈ ℝ ) |
41 |
13
|
absge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
42 |
|
nn0ge0 |
⊢ ( 𝑎 ∈ ℕ0 → 0 ≤ 𝑎 ) |
43 |
42
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) → 0 ≤ 𝑎 ) |
44 |
43
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ 𝑎 ) |
45 |
40 35 41 44
|
lt2sqd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) < 𝑎 ↔ ( ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↑ 2 ) < ( 𝑎 ↑ 2 ) ) ) |
46 |
39 45
|
mpbird |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( abs ‘ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) < 𝑎 ) |
47 |
17 46
|
eqbrtrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( abs ‘ ( 0 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) < 𝑎 ) |
48 |
|
0red |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ∈ ℝ ) |
49 |
48 12 35
|
absdifltd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( abs ‘ ( 0 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) < 𝑎 ↔ ( ( ( ( √ ‘ 𝐷 ) · 𝑏 ) − 𝑎 ) < 0 ∧ 0 < ( ( ( √ ‘ 𝐷 ) · 𝑏 ) + 𝑎 ) ) ) ) |
50 |
47 49
|
mpbid |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( ( ( √ ‘ 𝐷 ) · 𝑏 ) − 𝑎 ) < 0 ∧ 0 < ( ( ( √ ‘ 𝐷 ) · 𝑏 ) + 𝑎 ) ) ) |
51 |
50
|
simprd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 < ( ( ( √ ‘ 𝐷 ) · 𝑏 ) + 𝑎 ) ) |
52 |
|
nn0cn |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℂ ) |
53 |
52
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑎 ∈ ℂ ) |
55 |
54 13
|
addcomd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( ( ( √ ‘ 𝐷 ) · 𝑏 ) + 𝑎 ) ) |
56 |
51 55
|
breqtrrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 < ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
57 |
56
|
adantrl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 0 < ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
58 |
|
simprl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
59 |
57 58
|
breqtrrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 0 < 𝐴 ) |
60 |
59
|
ex |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 < 𝐴 ) ) |
61 |
60
|
rexlimdvva |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) → ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 < 𝐴 ) ) |
62 |
61
|
expimpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 0 < 𝐴 ) ) |
63 |
1 62
|
sylbid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → 0 < 𝐴 ) ) |
64 |
63
|
imp |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 < 𝐴 ) |