| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell14qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 2 |  | 0cnd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ∈  ℂ ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 4 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ℕ ) | 
						
							| 5 | 4 | nnred | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ℝ ) | 
						
							| 6 | 4 | nnnn0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0ge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  𝐷 ) | 
						
							| 8 | 5 7 | resqrtcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 9 |  | zre | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℝ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ )  →  𝑏  ∈  ℝ ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑏  ∈  ℝ ) | 
						
							| 12 | 8 11 | remulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ ) | 
						
							| 14 | 2 13 | abssubd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( abs ‘ ( 0  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  =  ( abs ‘ ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  −  0 ) ) ) | 
						
							| 15 | 13 | subid1d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  −  0 )  =  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( abs ‘ ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  −  0 ) )  =  ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 17 | 14 16 | eqtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( abs ‘ ( 0  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  =  ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 18 |  | absresq | ⊢ ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℝ  →  ( ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ↑ 2 )  =  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) | 
						
							| 19 | 12 18 | syl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ↑ 2 )  =  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) | 
						
							| 20 | 5 | recnd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ℂ ) | 
						
							| 21 | 20 | sqrtcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 22 | 10 | recnd | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ )  →  𝑏  ∈  ℂ ) | 
						
							| 23 | 22 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑏  ∈  ℂ ) | 
						
							| 24 | 21 23 | sqmuld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 )  =  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 25 | 20 | sqsqrtd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( √ ‘ 𝐷 ) ↑ 2 )  =  𝐷 ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 27 | 19 24 26 | 3eqtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ↑ 2 )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 28 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 29 |  | simpr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 30 | 28 29 | breqtrrid | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  <  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 31 | 11 | resqcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝑏 ↑ 2 )  ∈  ℝ ) | 
						
							| 32 | 5 31 | remulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 33 |  | nn0re | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℝ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ )  →  𝑎  ∈  ℝ ) | 
						
							| 35 | 34 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑎  ∈  ℝ ) | 
						
							| 36 | 35 | resqcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝑎 ↑ 2 )  ∈  ℝ ) | 
						
							| 37 | 32 36 | posdifd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  <  ( 𝑎 ↑ 2 )  ↔  0  <  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) ) | 
						
							| 38 | 30 37 | mpbird | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  <  ( 𝑎 ↑ 2 ) ) | 
						
							| 39 | 27 38 | eqbrtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ↑ 2 )  <  ( 𝑎 ↑ 2 ) ) | 
						
							| 40 | 13 | abscld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∈  ℝ ) | 
						
							| 41 | 13 | absge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 42 |  | nn0ge0 | ⊢ ( 𝑎  ∈  ℕ0  →  0  ≤  𝑎 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ )  →  0  ≤  𝑎 ) | 
						
							| 44 | 43 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  𝑎 ) | 
						
							| 45 | 40 35 41 44 | lt2sqd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  <  𝑎  ↔  ( ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ↑ 2 )  <  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 46 | 39 45 | mpbird | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( abs ‘ ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  <  𝑎 ) | 
						
							| 47 | 17 46 | eqbrtrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( abs ‘ ( 0  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  <  𝑎 ) | 
						
							| 48 |  | 0red | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ∈  ℝ ) | 
						
							| 49 | 48 12 35 | absdifltd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( abs ‘ ( 0  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  <  𝑎  ↔  ( ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  −  𝑎 )  <  0  ∧  0  <  ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  +  𝑎 ) ) ) ) | 
						
							| 50 | 47 49 | mpbid | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  −  𝑎 )  <  0  ∧  0  <  ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  +  𝑎 ) ) ) | 
						
							| 51 | 50 | simprd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  <  ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  +  𝑎 ) ) | 
						
							| 52 |  | nn0cn | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℂ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ )  →  𝑎  ∈  ℂ ) | 
						
							| 54 | 53 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑎  ∈  ℂ ) | 
						
							| 55 | 54 13 | addcomd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( ( ( √ ‘ 𝐷 )  ·  𝑏 )  +  𝑎 ) ) | 
						
							| 56 | 51 55 | breqtrrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  <  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 57 | 56 | adantrl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  0  <  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 58 |  | simprl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 59 | 57 58 | breqtrrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  0  <  𝐴 ) | 
						
							| 60 | 59 | ex | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  <  𝐴 ) ) | 
						
							| 61 | 60 | rexlimdvva | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  →  ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  <  𝐴 ) ) | 
						
							| 62 | 61 | expimpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  0  <  𝐴 ) ) | 
						
							| 63 | 1 62 | sylbid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  →  0  <  𝐴 ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  0  <  𝐴 ) |