| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  𝐷  ∈  ( ℕ  ∖  ◻NN ) ) | 
						
							| 2 |  | simprll | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 3 |  | simprrl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  𝐵  ∈  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 4 |  | pell1234qrmulcl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 𝐴  ·  𝐵 )  ∈  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  ( 𝐴  ·  𝐵 )  ∈  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 6 |  | pell1234qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 7 | 2 6 | syldan | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 8 |  | pell1234qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐵  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 9 | 3 8 | syldan | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 10 |  | simprlr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  0  <  𝐴 ) | 
						
							| 11 |  | simprrr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  0  <  𝐵 ) | 
						
							| 12 | 7 9 10 11 | mulgt0d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  0  <  ( 𝐴  ·  𝐵 ) ) | 
						
							| 13 | 5 12 | jca | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) )  →  ( ( 𝐴  ·  𝐵 )  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) )  →  ( ( 𝐴  ·  𝐵 )  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 15 |  | elpell14qr2 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) ) ) | 
						
							| 16 |  | elpell14qr2 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐵  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) ) | 
						
							| 17 | 15 16 | anbi12d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  ↔  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  ∧  ( 𝐵  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐵 ) ) ) ) | 
						
							| 18 |  | elpell14qr2 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ·  𝐵 )  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( ( 𝐴  ·  𝐵 )  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 19 | 14 17 18 | 3imtr4d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 20 | 19 | 3impib | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) |