Metamath Proof Explorer


Theorem pell14qrre

Description: A positive Pell solution is a real number. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 pell14qrss1234 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ( Pell1234QR ‘ 𝐷 ) )
2 1 sselda ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) )
3 pell1234qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )
4 2 3 syldan ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )