Step |
Hyp |
Ref |
Expression |
1 |
|
pell1234qrreccl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ) |
2 |
1
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ) |
3 |
|
pell1234qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
4 |
3
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ ) |
5 |
|
simprr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 ) |
6 |
4 5
|
recgt0d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 0 < ( 1 / 𝐴 ) ) |
7 |
2 6
|
jca |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ( ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < ( 1 / 𝐴 ) ) ) |
8 |
7
|
ex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < ( 1 / 𝐴 ) ) ) ) |
9 |
|
elpell14qr2 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) ) |
10 |
|
elpell14qr2 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 1 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < ( 1 / 𝐴 ) ) ) ) |
11 |
8 9 10
|
3imtr4d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → ( 1 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |