Metamath Proof Explorer


Theorem pell14qrreccl

Description: Positive Pell solutions are closed under reciprocal. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrreccl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 pell1234qrreccl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) )
2 1 adantrr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) )
3 pell1234qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )
4 3 adantrr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ )
5 simprr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 )
6 4 5 recgt0d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 0 < ( 1 / 𝐴 ) )
7 2 6 jca ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ( ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < ( 1 / 𝐴 ) ) )
8 7 ex ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < ( 1 / 𝐴 ) ) ) )
9 elpell14qr2 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) )
10 elpell14qr2 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 1 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( ( 1 / 𝐴 ) ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < ( 1 / 𝐴 ) ) ) )
11 8 9 10 3imtr4d ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → ( 1 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) ) )
12 11 imp ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) )