| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝑏  ∈  ℕ0  →  𝑏  ∈  ℤ ) | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑏  ∈  ℕ0  →  𝑏  ∈  ℤ ) ) | 
						
							| 3 | 2 | anim1d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝑏  ∈  ℕ0  ∧  ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑏  ∈  ℤ  ∧  ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 4 | 3 | reximdv2 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 )  →  ∃ 𝑏  ∈  ℤ ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 5 | 4 | anim2d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝑎  ∈  ℝ  ∧  ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  ∈  ℝ  ∧  ∃ 𝑏  ∈  ℤ ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 6 |  | elpell14qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝑎  ∈  ℝ  ∧  ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 7 |  | elpell1234qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑎  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  ( 𝑎  ∈  ℝ  ∧  ∃ 𝑏  ∈  ℤ ∃ 𝑐  ∈  ℤ ( 𝑎  =  ( 𝑏  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 8 | 5 6 7 | 3imtr4d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  →  𝑎  ∈  ( Pell1234QR ‘ 𝐷 ) ) ) | 
						
							| 9 | 8 | ssrdv | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell14QR ‘ 𝐷 )  ⊆  ( Pell1234QR ‘ 𝐷 ) ) |