Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
2 |
|
1red |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 1 ∈ ℝ ) |
3 |
|
simplrl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑎 ∈ ℕ0 ) |
4 |
3
|
nn0red |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑎 ∈ ℝ ) |
5 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
6 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ℕ ) |
7 |
6
|
nnnn0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ℕ0 ) |
8 |
7
|
nn0red |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝐷 ∈ ℝ ) |
9 |
7
|
nn0ge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ 𝐷 ) |
10 |
8 9
|
resqrtcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
11 |
|
simplrr |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑏 ∈ ℕ0 ) |
12 |
11
|
nn0red |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑏 ∈ ℝ ) |
13 |
10 12
|
remulcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℝ ) |
14 |
4 13
|
readdcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∈ ℝ ) |
15 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
16 |
15
|
a1i |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 2 ∈ ℕ0 ) |
17 |
11 16
|
nn0expcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝑏 ↑ 2 ) ∈ ℕ0 ) |
18 |
7 17
|
nn0mulcld |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) ∈ ℕ0 ) |
19 |
18
|
nn0ge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) |
20 |
18
|
nn0red |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) ∈ ℝ ) |
21 |
2 20
|
addge02d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 0 ≤ ( 𝐷 · ( 𝑏 ↑ 2 ) ) ↔ 1 ≤ ( ( 𝐷 · ( 𝑏 ↑ 2 ) ) + 1 ) ) ) |
22 |
19 21
|
mpbid |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 1 ≤ ( ( 𝐷 · ( 𝑏 ↑ 2 ) ) + 1 ) ) |
23 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
24 |
23
|
a1i |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 1 ↑ 2 ) = 1 ) |
25 |
|
nn0cn |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℂ ) |
26 |
25
|
ad2antrl |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → 𝑎 ∈ ℂ ) |
27 |
26
|
sqcld |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → ( 𝑎 ↑ 2 ) ∈ ℂ ) |
28 |
5
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → 𝐷 ∈ ℕ ) |
29 |
28
|
nncnd |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → 𝐷 ∈ ℂ ) |
30 |
|
nn0cn |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℂ ) |
31 |
30
|
ad2antll |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → 𝑏 ∈ ℂ ) |
32 |
31
|
sqcld |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → ( 𝑏 ↑ 2 ) ∈ ℂ ) |
33 |
29 32
|
mulcld |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) ∈ ℂ ) |
34 |
|
1cnd |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → 1 ∈ ℂ ) |
35 |
27 33 34
|
subaddd |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → ( ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( 𝐷 · ( 𝑏 ↑ 2 ) ) + 1 ) = ( 𝑎 ↑ 2 ) ) ) |
36 |
35
|
biimpa |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( ( 𝐷 · ( 𝑏 ↑ 2 ) ) + 1 ) = ( 𝑎 ↑ 2 ) ) |
37 |
36
|
eqcomd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝑎 ↑ 2 ) = ( ( 𝐷 · ( 𝑏 ↑ 2 ) ) + 1 ) ) |
38 |
22 24 37
|
3brtr4d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 1 ↑ 2 ) ≤ ( 𝑎 ↑ 2 ) ) |
39 |
|
0le1 |
⊢ 0 ≤ 1 |
40 |
39
|
a1i |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ 1 ) |
41 |
3
|
nn0ge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ 𝑎 ) |
42 |
2 4 40 41
|
le2sqd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 1 ≤ 𝑎 ↔ ( 1 ↑ 2 ) ≤ ( 𝑎 ↑ 2 ) ) ) |
43 |
38 42
|
mpbird |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 1 ≤ 𝑎 ) |
44 |
8 9
|
sqrtge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ ( √ ‘ 𝐷 ) ) |
45 |
11
|
nn0ge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ 𝑏 ) |
46 |
10 12 44 45
|
mulge0d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 0 ≤ ( ( √ ‘ 𝐷 ) · 𝑏 ) ) |
47 |
4 13
|
addge01d |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 0 ≤ ( ( √ ‘ 𝐷 ) · 𝑏 ) ↔ 𝑎 ≤ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
48 |
46 47
|
mpbid |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 𝑎 ≤ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
49 |
2 4 14 43 48
|
letrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 1 ≤ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
50 |
49
|
adantrl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 1 ≤ ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
51 |
|
simprl |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
52 |
50 51
|
breqtrrd |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 1 ≤ 𝐴 ) |
53 |
52
|
ex |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) → ( ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 1 ≤ 𝐴 ) ) |
54 |
53
|
rexlimdvva |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ℝ ) → ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → 1 ≤ 𝐴 ) ) |
55 |
54
|
expimpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 1 ≤ 𝐴 ) ) |
56 |
1 55
|
sylbid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) → 1 ≤ 𝐴 ) ) |
57 |
56
|
imp |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) → 1 ≤ 𝐴 ) |