Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
⊢ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ∈ Fin |
2 |
|
xpfi |
⊢ ( ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ∈ Fin ∧ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ∈ Fin ) → ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ∈ Fin ) |
3 |
1 1 2
|
mp2an |
⊢ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ∈ Fin |
4 |
|
isfinite |
⊢ ( ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ∈ Fin ↔ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ ω ) |
5 |
3 4
|
mpbi |
⊢ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ ω |
6 |
|
nnenom |
⊢ ℕ ≈ ω |
7 |
6
|
ensymi |
⊢ ω ≈ ℕ |
8 |
|
sdomentr |
⊢ ( ( ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ ω ∧ ω ≈ ℕ ) → ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ ℕ ) |
9 |
5 7 8
|
mp2an |
⊢ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ ℕ |
10 |
|
ensym |
⊢ ( { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ → ℕ ≈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) |
11 |
10
|
ad2antll |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑎 ≠ 0 ∧ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ ) ) → ℕ ≈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) |
12 |
|
sdomentr |
⊢ ( ( ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ ℕ ∧ ℕ ≈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) → ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) |
13 |
9 11 12
|
sylancr |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑎 ≠ 0 ∧ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ ) ) → ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ≺ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) |
14 |
|
opabssxp |
⊢ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ⊆ ( ℕ × ℕ ) |
15 |
14
|
sseli |
⊢ ( 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } → 𝑑 ∈ ( ℕ × ℕ ) ) |
16 |
|
simprrl |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( 1st ‘ 𝑑 ) ∈ ℕ ) |
17 |
16
|
nnzd |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( 1st ‘ 𝑑 ) ∈ ℤ ) |
18 |
|
simpllr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → 𝑎 ∈ ℤ ) |
19 |
|
simplr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → 𝑎 ≠ 0 ) |
20 |
|
nnabscl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ℕ ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( abs ‘ 𝑎 ) ∈ ℕ ) |
22 |
|
zmodfz |
⊢ ( ( ( 1st ‘ 𝑑 ) ∈ ℤ ∧ ( abs ‘ 𝑎 ) ∈ ℕ ) → ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) |
23 |
17 21 22
|
syl2anc |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) |
24 |
|
simprrr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( 2nd ‘ 𝑑 ) ∈ ℕ ) |
25 |
24
|
nnzd |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( 2nd ‘ 𝑑 ) ∈ ℤ ) |
26 |
|
zmodfz |
⊢ ( ( ( 2nd ‘ 𝑑 ) ∈ ℤ ∧ ( abs ‘ 𝑎 ) ∈ ℕ ) → ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) |
27 |
25 21 26
|
syl2anc |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) |
28 |
23 27
|
jca |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) → ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ) |
29 |
28
|
ex |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) → ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ) ) |
30 |
|
elxp7 |
⊢ ( 𝑑 ∈ ( ℕ × ℕ ) ↔ ( 𝑑 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑑 ) ∈ ℕ ∧ ( 2nd ‘ 𝑑 ) ∈ ℕ ) ) ) |
31 |
|
opelxp |
⊢ ( 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 ∈ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ↔ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ) |
32 |
29 30 31
|
3imtr4g |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( 𝑑 ∈ ( ℕ × ℕ ) → 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 ∈ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ) ) |
33 |
15 32
|
syl5 |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } → 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 ∈ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ) ) |
34 |
33
|
imp |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) → 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 ∈ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ) |
35 |
34
|
adantlrr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑎 ≠ 0 ∧ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ ) ) ∧ 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) → 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 ∈ ( ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) × ( 0 ... ( ( abs ‘ 𝑎 ) − 1 ) ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑑 = 𝑒 → ( 1st ‘ 𝑑 ) = ( 1st ‘ 𝑒 ) ) |
37 |
36
|
oveq1d |
⊢ ( 𝑑 = 𝑒 → ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑑 = 𝑒 → ( 2nd ‘ 𝑑 ) = ( 2nd ‘ 𝑒 ) ) |
39 |
38
|
oveq1d |
⊢ ( 𝑑 = 𝑒 → ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) |
40 |
37 39
|
opeq12d |
⊢ ( 𝑑 = 𝑒 → 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) |
41 |
13 35 40
|
fphpd |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑎 ≠ 0 ∧ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ ) ) → ∃ 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ∃ 𝑒 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) |
42 |
|
eleq1w |
⊢ ( 𝑏 = 𝑓 → ( 𝑏 ∈ ℕ ↔ 𝑓 ∈ ℕ ) ) |
43 |
|
eleq1w |
⊢ ( 𝑐 = 𝑔 → ( 𝑐 ∈ ℕ ↔ 𝑔 ∈ ℕ ) ) |
44 |
42 43
|
bi2anan9 |
⊢ ( ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) → ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ↔ ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ) ) |
45 |
|
oveq1 |
⊢ ( 𝑏 = 𝑓 → ( 𝑏 ↑ 2 ) = ( 𝑓 ↑ 2 ) ) |
46 |
|
oveq1 |
⊢ ( 𝑐 = 𝑔 → ( 𝑐 ↑ 2 ) = ( 𝑔 ↑ 2 ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝑐 = 𝑔 → ( 𝐷 · ( 𝑐 ↑ 2 ) ) = ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) |
48 |
45 47
|
oveqan12d |
⊢ ( ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) → ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) ) |
49 |
48
|
eqeq1d |
⊢ ( ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) → ( ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ↔ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) |
50 |
44 49
|
anbi12d |
⊢ ( ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) → ( ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ↔ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ) |
51 |
50
|
cbvopabv |
⊢ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } |
52 |
51
|
eleq2i |
⊢ ( 𝑒 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ↔ 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } ) |
53 |
52
|
biimpi |
⊢ ( 𝑒 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } → 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } ) |
54 |
|
elopab |
⊢ ( 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ↔ ∃ 𝑏 ∃ 𝑐 ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) |
55 |
|
elopab |
⊢ ( 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } ↔ ∃ 𝑓 ∃ 𝑔 ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ) |
56 |
|
simp3ll |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) → 𝑏 ∈ ℕ ) |
57 |
56
|
3expb |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) → 𝑏 ∈ ℕ ) |
58 |
57
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑏 ∈ ℕ ) |
59 |
|
simp3lr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) → 𝑐 ∈ ℕ ) |
60 |
59
|
3expb |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) → 𝑐 ∈ ℕ ) |
61 |
60
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑐 ∈ ℕ ) |
62 |
|
simp1lr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑎 ∈ ℤ ) |
63 |
62
|
3adant1r |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑎 ∈ ℤ ) |
64 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) → 𝐷 ∈ ℕ ) |
65 |
64
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝐷 ∈ ℕ ) |
66 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) → ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) |
67 |
66
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) |
68 |
|
simp2ll |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑓 ∈ ℕ ) |
69 |
68
|
3adant2l |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑓 ∈ ℕ ) |
70 |
|
simp2lr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑔 ∈ ℕ ) |
71 |
70
|
3adant2l |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑔 ∈ ℕ ) |
72 |
|
simp2l |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑒 = 〈 𝑓 , 𝑔 〉 ) |
73 |
|
simp1rl |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑑 = 〈 𝑏 , 𝑐 〉 ) |
74 |
|
simp3l |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑑 ≠ 𝑒 ) |
75 |
|
simp3 |
⊢ ( ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑑 ≠ 𝑒 ) → 𝑑 ≠ 𝑒 ) |
76 |
|
simp2 |
⊢ ( ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑑 ≠ 𝑒 ) → 𝑑 = 〈 𝑏 , 𝑐 〉 ) |
77 |
|
simp1 |
⊢ ( ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑑 ≠ 𝑒 ) → 𝑒 = 〈 𝑓 , 𝑔 〉 ) |
78 |
75 76 77
|
3netr3d |
⊢ ( ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑑 ≠ 𝑒 ) → 〈 𝑏 , 𝑐 〉 ≠ 〈 𝑓 , 𝑔 〉 ) |
79 |
|
vex |
⊢ 𝑏 ∈ V |
80 |
|
vex |
⊢ 𝑐 ∈ V |
81 |
79 80
|
opth |
⊢ ( 〈 𝑏 , 𝑐 〉 = 〈 𝑓 , 𝑔 〉 ↔ ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) ) |
82 |
81
|
necon3abii |
⊢ ( 〈 𝑏 , 𝑐 〉 ≠ 〈 𝑓 , 𝑔 〉 ↔ ¬ ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) ) |
83 |
78 82
|
sylib |
⊢ ( ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑑 ≠ 𝑒 ) → ¬ ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) ) |
84 |
72 73 74 83
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ¬ ( 𝑏 = 𝑓 ∧ 𝑐 = 𝑔 ) ) |
85 |
|
simp1lr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 𝑎 ≠ 0 ) |
86 |
|
simp1rr |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) |
87 |
86
|
3adant1l |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) |
88 |
|
simp2rr |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) |
89 |
|
simp3r |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) |
90 |
|
simp3 |
⊢ ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) |
91 |
|
ovex |
⊢ ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ V |
92 |
|
ovex |
⊢ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) ∈ V |
93 |
91 92
|
opth |
⊢ ( 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ↔ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) |
94 |
90 93
|
sylib |
⊢ ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) |
95 |
|
simprl |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) |
96 |
|
simpll |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → 𝑑 = 〈 𝑏 , 𝑐 〉 ) |
97 |
96
|
fveq2d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 1st ‘ 𝑑 ) = ( 1st ‘ 〈 𝑏 , 𝑐 〉 ) ) |
98 |
79 80
|
op1st |
⊢ ( 1st ‘ 〈 𝑏 , 𝑐 〉 ) = 𝑏 |
99 |
97 98
|
eqtrdi |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 1st ‘ 𝑑 ) = 𝑏 ) |
100 |
99
|
oveq1d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( 𝑏 mod ( abs ‘ 𝑎 ) ) ) |
101 |
|
simplr |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → 𝑒 = 〈 𝑓 , 𝑔 〉 ) |
102 |
101
|
fveq2d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 1st ‘ 𝑒 ) = ( 1st ‘ 〈 𝑓 , 𝑔 〉 ) ) |
103 |
|
vex |
⊢ 𝑓 ∈ V |
104 |
|
vex |
⊢ 𝑔 ∈ V |
105 |
103 104
|
op1st |
⊢ ( 1st ‘ 〈 𝑓 , 𝑔 〉 ) = 𝑓 |
106 |
102 105
|
eqtrdi |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 1st ‘ 𝑒 ) = 𝑓 ) |
107 |
106
|
oveq1d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ) |
108 |
95 100 107
|
3eqtr3d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 𝑏 mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ) |
109 |
|
simprr |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) |
110 |
96
|
fveq2d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 2nd ‘ 𝑑 ) = ( 2nd ‘ 〈 𝑏 , 𝑐 〉 ) ) |
111 |
79 80
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑏 , 𝑐 〉 ) = 𝑐 |
112 |
110 111
|
eqtrdi |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 2nd ‘ 𝑑 ) = 𝑐 ) |
113 |
112
|
oveq1d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( 𝑐 mod ( abs ‘ 𝑎 ) ) ) |
114 |
101
|
fveq2d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 2nd ‘ 𝑒 ) = ( 2nd ‘ 〈 𝑓 , 𝑔 〉 ) ) |
115 |
103 104
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑓 , 𝑔 〉 ) = 𝑔 |
116 |
114 115
|
eqtrdi |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 2nd ‘ 𝑒 ) = 𝑔 ) |
117 |
116
|
oveq1d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) |
118 |
109 113 117
|
3eqtr3d |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( 𝑐 mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) |
119 |
108 118
|
jca |
⊢ ( ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) ∧ ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) ) → ( ( 𝑏 mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ∧ ( 𝑐 mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) ) |
120 |
119
|
ex |
⊢ ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ) → ( ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) → ( ( 𝑏 mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ∧ ( 𝑐 mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) ) ) |
121 |
120
|
3adant3 |
⊢ ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ( ( ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ∧ ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) = ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) ) → ( ( 𝑏 mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ∧ ( 𝑐 mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) ) ) |
122 |
94 121
|
mpd |
⊢ ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ( ( 𝑏 mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ∧ ( 𝑐 mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) ) |
123 |
73 72 89 122
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ( ( 𝑏 mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ∧ ( 𝑐 mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) ) |
124 |
123
|
simpld |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ( 𝑏 mod ( abs ‘ 𝑎 ) ) = ( 𝑓 mod ( abs ‘ 𝑎 ) ) ) |
125 |
123
|
simprd |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ( 𝑐 mod ( abs ‘ 𝑎 ) ) = ( 𝑔 mod ( abs ‘ 𝑎 ) ) ) |
126 |
58 61 63 65 67 69 71 84 85 87 88 124 125
|
pellexlem6 |
⊢ ( ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) ∧ ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) ∧ ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) |
127 |
126
|
3exp |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) → ( ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) |
128 |
127
|
exlimdvv |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) → ( ∃ 𝑓 ∃ 𝑔 ( 𝑒 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) ) → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) |
129 |
55 128
|
syl5bi |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) ) → ( 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) |
130 |
129
|
ex |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) → ( 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) ) |
131 |
130
|
exlimdvv |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( ∃ 𝑏 ∃ 𝑐 ( 𝑑 = 〈 𝑏 , 𝑐 〉 ∧ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) ) → ( 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) ) |
132 |
54 131
|
syl5bi |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } → ( 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) ) |
133 |
132
|
impd |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( ( 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ∧ 𝑒 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ ) ∧ ( ( 𝑓 ↑ 2 ) − ( 𝐷 · ( 𝑔 ↑ 2 ) ) ) = 𝑎 ) } ) → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) |
134 |
53 133
|
sylan2i |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( ( 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ∧ 𝑒 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ) → ( ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) ) |
135 |
134
|
rexlimdvv |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) → ( ∃ 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ∃ 𝑒 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) ) |
136 |
135
|
imp |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≠ 0 ) ∧ ∃ 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ∃ 𝑒 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) |
137 |
136
|
adantlrr |
⊢ ( ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑎 ≠ 0 ∧ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ ) ) ∧ ∃ 𝑑 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ∃ 𝑒 ∈ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ( 𝑑 ≠ 𝑒 ∧ 〈 ( ( 1st ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑑 ) mod ( abs ‘ 𝑎 ) ) 〉 = 〈 ( ( 1st ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) , ( ( 2nd ‘ 𝑒 ) mod ( abs ‘ 𝑎 ) ) 〉 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) |
138 |
41 137
|
mpdan |
⊢ ( ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑎 ≠ 0 ∧ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) |
139 |
|
pellexlem5 |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ∃ 𝑎 ∈ ℤ ( 𝑎 ≠ 0 ∧ { 〈 𝑏 , 𝑐 〉 ∣ ( ( 𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 𝑎 ) } ≈ ℕ ) ) |
140 |
138 139
|
r19.29a |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ( ( 𝑥 ↑ 2 ) − ( 𝐷 · ( 𝑦 ↑ 2 ) ) ) = 1 ) |