Step |
Hyp |
Ref |
Expression |
1 |
|
nnex |
⊢ ℕ ∈ V |
2 |
1 1
|
xpex |
⊢ ( ℕ × ℕ ) ∈ V |
3 |
|
opabssxp |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ⊆ ( ℕ × ℕ ) |
4 |
2 3
|
ssexi |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∈ V |
5 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → 𝑎 ∈ ℚ ) |
6 |
|
simprrl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → 0 < 𝑎 ) |
7 |
|
qgt0numnn |
⊢ ( ( 𝑎 ∈ ℚ ∧ 0 < 𝑎 ) → ( numer ‘ 𝑎 ) ∈ ℕ ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( numer ‘ 𝑎 ) ∈ ℕ ) |
9 |
|
qdencl |
⊢ ( 𝑎 ∈ ℚ → ( denom ‘ 𝑎 ) ∈ ℕ ) |
10 |
5 9
|
syl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( denom ‘ 𝑎 ) ∈ ℕ ) |
11 |
8 10
|
jca |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ) |
12 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → 𝐷 ∈ ℕ ) |
13 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) |
14 |
|
pellexlem1 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ) |
15 |
12 8 10 13 14
|
syl31anc |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ) |
16 |
|
simprrr |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) |
17 |
|
qeqnumdivden |
⊢ ( 𝑎 ∈ ℚ → 𝑎 = ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑎 ∈ ℚ → ( 𝑎 − ( √ ‘ 𝐷 ) ) = ( ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) − ( √ ‘ 𝐷 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑎 ∈ ℚ → ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) = ( abs ‘ ( ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) − ( √ ‘ 𝐷 ) ) ) ) |
20 |
19
|
breq1d |
⊢ ( 𝑎 ∈ ℚ → ( ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ↔ ( abs ‘ ( ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) |
21 |
5 20
|
syl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ↔ ( abs ‘ ( ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) |
22 |
16 21
|
mpbid |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( abs ‘ ( ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) |
23 |
|
pellexlem2 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) → ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) |
24 |
12 8 10 22 23
|
syl31anc |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) |
25 |
11 15 24
|
jca32 |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) → ( ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ∧ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
26 |
25
|
ex |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ( ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ∧ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) |
27 |
|
breq2 |
⊢ ( 𝑥 = 𝑎 → ( 0 < 𝑥 ↔ 0 < 𝑎 ) ) |
28 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑎 → ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) = ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( denom ‘ 𝑥 ) = ( denom ‘ 𝑎 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( denom ‘ 𝑥 ) ↑ - 2 ) = ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) |
31 |
28 30
|
breq12d |
⊢ ( 𝑥 = 𝑎 → ( ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ↔ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) |
32 |
27 31
|
anbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) ↔ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) |
33 |
32
|
elrab |
⊢ ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ↔ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) |
34 |
|
fvex |
⊢ ( numer ‘ 𝑎 ) ∈ V |
35 |
|
fvex |
⊢ ( denom ‘ 𝑎 ) ∈ V |
36 |
|
eleq1 |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( 𝑦 ∈ ℕ ↔ ( numer ‘ 𝑎 ) ∈ ℕ ) ) |
37 |
36
|
anbi1d |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ↔ ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) ) |
38 |
|
oveq1 |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( 𝑦 ↑ 2 ) = ( ( numer ‘ 𝑎 ) ↑ 2 ) ) |
39 |
38
|
oveq1d |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) |
40 |
39
|
neeq1d |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ↔ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ) ) |
41 |
39
|
fveq2d |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) = ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) ) |
42 |
41
|
breq1d |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ↔ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) |
43 |
40 42
|
anbi12d |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ↔ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
44 |
37 43
|
anbi12d |
⊢ ( 𝑦 = ( numer ‘ 𝑎 ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ↔ ( ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) |
45 |
|
eleq1 |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( 𝑧 ∈ ℕ ↔ ( denom ‘ 𝑎 ) ∈ ℕ ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ 𝑧 ∈ ℕ ) ↔ ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ) ) |
47 |
|
oveq1 |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( 𝑧 ↑ 2 ) = ( ( denom ‘ 𝑎 ) ↑ 2 ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( 𝐷 · ( 𝑧 ↑ 2 ) ) = ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) |
49 |
48
|
oveq2d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) = ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) |
50 |
49
|
neeq1d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ↔ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ) ) |
51 |
49
|
fveq2d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) = ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) ) |
52 |
51
|
breq1d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ↔ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) |
53 |
50 52
|
anbi12d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ↔ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
54 |
46 53
|
anbi12d |
⊢ ( 𝑧 = ( denom ‘ 𝑎 ) → ( ( ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ↔ ( ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ∧ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) ) |
55 |
34 35 44 54
|
opelopab |
⊢ ( 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ↔ ( ( ( numer ‘ 𝑎 ) ∈ ℕ ∧ ( denom ‘ 𝑎 ) ∈ ℕ ) ∧ ( ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 ) − ( 𝐷 · ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
56 |
26 33 55
|
3imtr4g |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } → 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) ) |
57 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ⊆ ℚ |
58 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ∧ 𝑏 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) ) → 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) |
59 |
57 58
|
sselid |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ∧ 𝑏 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) ) → 𝑎 ∈ ℚ ) |
60 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ∧ 𝑏 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) ) → 𝑏 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) |
61 |
57 60
|
sselid |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ∧ 𝑏 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) ) → 𝑏 ∈ ℚ ) |
62 |
34 35
|
opth |
⊢ ( 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 = 〈 ( numer ‘ 𝑏 ) , ( denom ‘ 𝑏 ) 〉 ↔ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) |
63 |
|
simprl |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ) |
64 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) |
65 |
63 64
|
oveq12d |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) = ( ( numer ‘ 𝑏 ) / ( denom ‘ 𝑏 ) ) ) |
66 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → 𝑎 ∈ ℚ ) |
67 |
66 17
|
syl |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → 𝑎 = ( ( numer ‘ 𝑎 ) / ( denom ‘ 𝑎 ) ) ) |
68 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → 𝑏 ∈ ℚ ) |
69 |
|
qeqnumdivden |
⊢ ( 𝑏 ∈ ℚ → 𝑏 = ( ( numer ‘ 𝑏 ) / ( denom ‘ 𝑏 ) ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → 𝑏 = ( ( numer ‘ 𝑏 ) / ( denom ‘ 𝑏 ) ) ) |
71 |
65 67 70
|
3eqtr4d |
⊢ ( ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) ∧ ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) ) → 𝑎 = 𝑏 ) |
72 |
71
|
ex |
⊢ ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) → ( ( ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ∧ ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) → 𝑎 = 𝑏 ) ) |
73 |
62 72
|
syl5bi |
⊢ ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) → ( 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 = 〈 ( numer ‘ 𝑏 ) , ( denom ‘ 𝑏 ) 〉 → 𝑎 = 𝑏 ) ) |
74 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( numer ‘ 𝑎 ) = ( numer ‘ 𝑏 ) ) |
75 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( denom ‘ 𝑎 ) = ( denom ‘ 𝑏 ) ) |
76 |
74 75
|
opeq12d |
⊢ ( 𝑎 = 𝑏 → 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 = 〈 ( numer ‘ 𝑏 ) , ( denom ‘ 𝑏 ) 〉 ) |
77 |
73 76
|
impbid1 |
⊢ ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ) → ( 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 = 〈 ( numer ‘ 𝑏 ) , ( denom ‘ 𝑏 ) 〉 ↔ 𝑎 = 𝑏 ) ) |
78 |
59 61 77
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ∧ ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ∧ 𝑏 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) ) → ( 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 = 〈 ( numer ‘ 𝑏 ) , ( denom ‘ 𝑏 ) 〉 ↔ 𝑎 = 𝑏 ) ) |
79 |
78
|
ex |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( 𝑎 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ∧ 𝑏 ∈ { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) → ( 〈 ( numer ‘ 𝑎 ) , ( denom ‘ 𝑎 ) 〉 = 〈 ( numer ‘ 𝑏 ) , ( denom ‘ 𝑏 ) 〉 ↔ 𝑎 = 𝑏 ) ) ) |
80 |
56 79
|
dom2d |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ∈ V → { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) ) |
81 |
4 80
|
mpi |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → { 𝑥 ∈ ℚ ∣ ( 0 < 𝑥 ∧ ( abs ‘ ( 𝑥 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) |